1. notice
  2. English
  3. logic-topic
  4. 1. logic
  5. 2. set-theory
  6. 3. map
  7. 4. order
  8. 5. combinatorics
  9. calculus
  10. 6. real-numbers
  11. 7. limit-sequence
  12. 8. ℝ^n
  13. 9. Euclidean-space
  14. 10. Minkowski-space
  15. 11. polynomial
  16. 12. analytic-Euclidean
  17. 13. analytic-Minkowski
  18. 14. analytic-struct-operation
  19. 15. ordinary-differential-equation
  20. 16. volume
  21. 17. integral
  22. 18. divergence
  23. 19. limit-net
  24. 20. topology
  25. 21. compact
  26. 22. connected
  27. 23. topology-struct-operation
  28. 24. exponential
  29. 25. angle
  30. geometry
  31. 26. manifold
  32. 27. metric
  33. 28. metric-connection
  34. 29. geodesic-derivative
  35. 30. curvature-of-metric
  36. 31. Einstein-metric
  37. 32. constant-sectional-curvature
  38. 33. simple-symmetric-space
  39. 34. principal-bundle
  40. 35. group-action
  41. 36. stereographic-projection
  42. 37. Hopf-bundle
  43. field-theory
  44. 38. point-particle-non-relativity
  45. 39. point-particle-relativity
  46. 40. scalar-field
  47. 41. scalar-field-current
  48. 42. scalar-field-non-relativity
  49. 43. projective-lightcone
  50. 44. spacetime-momentum-spinor-representation
  51. 45. Lorentz-group
  52. 46. spinor-field
  53. 47. spinor-field-current
  54. 48. electromagnetic-field
  55. 49. Laplacian-of-tensor-field
  56. 50. Einstein-metric
  57. 51. interaction
  58. 52. harmonic-oscillator-quantization
  59. 53. spinor-field-misc
  60. 54. reference
  61. 中文
  62. 55. notice
  63. 逻辑
  64. 56. 逻辑
  65. 57. 集合论
  66. 58. 映射
  67. 59. 序
  68. 60. 组合
  69. 微积分
  70. 61. 实数
  71. 62. 数列极限
  72. 63. ℝ^n
  73. 64. Euclidean 空间
  74. 65. Minkowski 空间
  75. 66. 多项式
  76. 67. 解析 (Euclidean)
  77. 68. 解析 (Minkowski)
  78. 69. 解析 struct 的操作
  79. 70. 常微分方程
  80. 71. 体积
  81. 72. 积分
  82. 73. 散度
  83. 74. 网极限
  84. 75. 拓扑
  85. 76. 紧致
  86. 77. 连通
  87. 78. 拓扑 struct 的操作
  88. 79. 指数函数
  89. 80. 角度
  90. 几何
  91. 81. 流形
  92. 82. 度规
  93. 83. 度规的联络
  94. 84. Levi-Civita 导数
  95. 85. 度规的曲率
  96. 86. Einstein 度规
  97. 87. 常截面曲率
  98. 88. simple-symmetric-space
  99. 89. 主丛
  100. 90. 群作用
  101. 91. 球极投影
  102. 92. Hopf 丛
  103. 场论
  104. 93. 非相对论点粒子
  105. 94. 相对论点粒子
  106. 95. 纯量场
  107. 96. 纯量场的守恒流
  108. 97. 非相对论纯量场
  109. 98. 光锥射影
  110. 99. 时空动量的自旋表示
  111. 100. Lorentz 群
  112. 101. 旋量场
  113. 102. 旋量场的守恒流
  114. 103. 电磁场
  115. 104. 张量场的 Laplacian
  116. 105. Einstein 度规
  117. 106. 相互作用
  118. 107. 谐振子量子化
  119. 108. 旋量场杂项
  120. 109. 参考

note-math

[topology-subspace]

子拓扑 := let . 继承 点网系统

等价地定义, 子拓扑是使得嵌入映射 连续的最小拓扑

子拓扑的继承性. 是 子拓扑 <==> 是 子拓扑

Proof 根据 的结合性 +

[closed-in-subspace] closed in subspace 的刻画

Example

说明 可能存在 极限点 or 但 极限点只能

是闭集

  • ==>
  • ==>

[quotient-topology]

:= 使得商映射 连续的最大拓扑, 即

[product-topology]

:= 所有分量映射 连续的最小拓扑 i.e. 以集族

为的有限交集生成点网系统

因为 是分量映射

闭集的 product 也是闭集. by 极限点定义和 and 逻辑

image 不一定传递闭集. Example 闭集 映射到 轴得到非闭集

[sum-topology]

的拓扑是使得嵌入 连续的最大拓扑

所有 的 的点网系统 在 sum 空间的 copy 组成了 sum 空间的点网系统, 其中的集合的形式是