1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

quadratic-form_(tag) โ„๐‘› Quadratic form alias metric_(tag) Metric alias Inner product inner-product_(tag)

Example โ„2,โ„3 Distance (๐‘ฅ๐‘ฆ๐‘ง)โ‡๐‘ฅ2+๐‘ฆ2+๐‘ง2

Example โ„1,3 spacetime metric (๐‘ก๐‘ฅ๐‘ฆ๐‘ง)โ‡๐‘2โ‹…๐‘ก2โˆ’(๐‘ฅ2+๐‘ฆ2+๐‘ง2)

Bilinear function, Quadratic form

The commonly used notation for metric is ๐‘”(๐‘ฅ,๐‘ฆ),โŸจ๐‘ฅ,๐‘ฆโŸฉ. In coordinates, it is denoted as ๐‘”๐‘–๐‘—๐‘ฅ๐‘–๐‘ฆ๐‘—

Under coordinates, metric ๐‘” can be represented as matrix ๐บ and matrix multiplication (๐‘‹,๐‘Œ)โ‡๐‘‹โŠบ๐บ๐‘Œ

signature-inertial_(tag) signature (๐‘,๐‘ž) is invariant under GL(๐‘›,โ„). The eigenvalues and diagonalization of symmetric matrix ๐บ are (10โˆ’1) where there are ๐‘›+ ones, ๐‘›0 zeros, and ๐‘›โˆ’ negative ones. This can be understood as orbit classification of group action

quadratic-form-non-degenerated_(tag) Non-degenerate := ๐‘0=0 in signature

Degenerate quadratic forms can be restricted to the ๐‘›++๐‘›โˆ’ subspace to become non-degenerate

The following are equivalent

  • metric is non-degenerate
  • quadratic-form-dual_(tag) is a bijection

    ๐‘‰โŸถLin(๐‘‰โ†’โ„)ย orย ๐‘‰โŠบ๐‘ฃโŸฟโŸจ๐‘ฃ,โŸฉย orย โŸจ๐‘ฃ|ย orย ๐‘”(๐‘ฃ,)ย orย ๐‘ฃโ™ญ

    The dual map relative to the metric is denoted as ๐‘ฃโ™ญ, and the inverse map of the metric dual is denoted as ๐›ผโ™ฏ

  • The quadratic form matrix is invertible
  • detย ๐บโ‰ 0

When a non-degenerate quadratic form is fixed, the structure group โ‰ƒย Oย (๐‘,๐‘ž). Keeping two directions yields SO(๐‘,๐‘ž)

The inverse of the metric matrix ๐‘” is ๐‘”โˆ’1. In coordinates, it is denoted as ๐‘”โ‡๐‘”๐‘–๐‘–โ€ฒ and ๐‘”โˆ’1โ‡๐‘”๐‘–๐‘–โ€ฒ

๐‘”โ‹…๐‘”โˆ’1=๐Ÿ™=๐‘”โˆ’1โ‹…๐‘” ==> In coordinates ๐‘”๐‘–๐‘—๐‘”๐‘–โ€ฒ๐‘—=๐›ฟ๐‘–๐‘–โ€ฒ=๐‘”๐‘–โ€ฒ๐‘—๐‘”๐‘–๐‘—

let the dual basis ๐‘’1,โ€ฆ,๐‘’๐‘›โˆˆ(๐‘‰โ†’โ„) of the basis ๐‘’1,โ€ฆ,๐‘’๐‘›โˆˆ๐‘‰ of the vector space be defined as ๐‘’๐‘–(๐‘’๐‘—)=๐›ฟ๐‘—๐‘–

let ๐›ผ=๐›ผ๐‘–๐‘’๐‘– then

๐›ผ(๐‘’๐‘—)=๐›ผ๐‘–๐‘’๐‘–(๐‘’๐‘—)=๐›ผ๐‘–๐›ฟ๐‘—๐‘–=๐›ผ๐‘—

rasing-and-lowring-index_(tag) Raising and lowering indices

quadratic-form-dual Matrix representation in coordinates

๐‘”(๐‘ฃ,)โ‡๐‘ฃโŠบ๐‘”=(๐‘ฃ1โ‹ฏ๐‘ฃ๐‘›)(๐‘”11โ‹ฏ๐‘”1๐‘›โ‹ฎโ‹ฑโ‹ฎ๐‘”๐‘›1โ‹ฏ๐‘”๐‘›๐‘›)=(๐‘ฃ๐‘—๐‘”๐‘—1โ‹ฏ๐‘ฃ๐‘—๐‘”๐‘—๐‘›)โ‰”(๐‘ฃ1โ‹ฏ๐‘ฃ๐‘›)

where ๐‘ฃ๐‘—๐‘”๐‘–๐‘—=๐‘ฃ๐‘– is the lowered index. Or

๐‘”(,๐‘ฃ)โ‡๐‘”๐‘ฃ=(๐‘”11โ‹ฏ๐‘”1๐‘›โ‹ฎโ‹ฑโ‹ฎ๐‘”๐‘›1โ‹ฏ๐‘”๐‘›๐‘›)(๐‘ฃ1โ‹ฎ๐‘ฃ๐‘›)=(๐‘ฃ๐‘—๐‘”1๐‘—โ‹ฎ๐‘ฃ๐‘—๐‘”๐‘›๐‘—)โ‰”(๐‘ฃ1โ‹ฎ๐‘ฃ๐‘›)

Note that the metric matrix is symmetric ๐‘”โŠบ=๐‘” or ๐‘”๐‘–๐‘—=๐‘”๐‘—๐‘–

๐‘ฃ๐‘– are the coefficients of ๐‘ฃโ™ญ represented by the dual basis, because ๐‘”(๐‘ฃ,๐‘’๐‘–)=๐‘ฃ๐‘—๐‘”๐‘–๐‘—=๐‘ฃ๐‘–, or using ๐‘”๐‘–๐‘— are the coefficients of ๐‘” in the dual basis ๐‘’๐‘–โŠ—๐‘’๐‘—

For the inverse of the metric matrix, define the metric ๐‘”โˆ’1 of the dual space ๐‘‰โŠบ, satisfying

๐‘”โˆ’1(๐‘ฃโ™ญ,๐‘คโ™ญ)=(๐‘”๐‘ฃ)โŠบ๐‘”โˆ’1(๐‘”๐‘ค)=๐‘ฃโŠบ(๐‘”๐‘”โˆ’1๐‘”)๐‘ค=๐‘ฃโŠบ๐‘”๐‘ค=๐‘”(๐‘ฃ,๐‘ค)

In coordinates

  • ๐‘”๐‘–๐‘–โ€ฒ๐›ผ๐‘–๐›ฝ๐‘–โ€ฒ
  • ๐‘”๐‘–๐‘–โ€ฒ๐›ผ๐‘–๐›ฝ๐‘–โ€ฒ
  • ๐›ผ๐‘–๐›ฝ๐‘–
  • ๐›ผ๐‘–๐›ฝ๐‘–

The metric dual of ๐‘”โˆ’1 is the inverse โ™ฏ of the metric dual โ™ญ of ๐‘”

๐‘ฃโ‡๐‘”๐‘ฃโ‡๐‘”โˆ’1๐‘”๐‘ฃ=๐‘ฃ

Therefore, there is also a raised index ๐‘”โˆ’1(๐‘ฃโ™ญ,๐‘’๐‘—)=๐‘ฃ๐‘—๐‘”๐‘–๐‘—=๐‘ฃ๐‘–

Conversely, starting from the inverse โ™ฏ of โ™ญ, it can be proven that it is the metric dual of some metric in ๐‘‰โŠบ, and this metric is ๐‘”โˆ’1 in matrix representation

The metric dual of the metric ๐‘”โˆ’1=๐‘”๐‘–๐‘—๐‘’๐‘–๐‘’๐‘— under the metric of (๐‘‰โŠบโŠ™2)โŠบ is ๐‘”=๐‘”๐‘–๐‘—๐‘’๐‘–๐‘’๐‘—โˆˆ(๐‘‰โŠ™2)โŠบ. The reverse is also true

tensor_(tag) Multilinearity (compatible with and logic of Cartesian product) + minimally independent (generating basis)

๐‘‰1ร—โ‹ฏร—๐‘‰๐‘˜โŸถ๐‘‰1โŠ—โ‹ฏโŠ—๐‘‰๐‘˜(๐‘ฃ1,โ€ฆ,๐‘ฃ๐‘˜)โŸฟ๐‘ฃ1โŠ—โ‹ฏโŠ—๐‘ฃ๐‘˜

Derived basis ๐‘’1,๐‘–1โŠ—โ‹ฏโŠ—๐‘’๐‘˜,๐‘–๐‘˜ and coefficients of derived basis ๐‘‡๐‘–1โ‹ฏ๐‘–๐‘˜

From the properties of tensors

๐‘ฃ1โŠ—โ‹ฏโŠ—๐‘ฃ๐‘˜=(๐‘ฃ1๐‘–1๐‘’1,๐‘–1)โŠ—โ‹ฏโŠ—(๐‘ฃ๐‘˜๐‘–๐‘˜๐‘’๐‘˜,๐‘–๐‘˜)=(๐‘ฃ1๐‘–1โ‹ฏ๐‘ฃ๐‘˜๐‘–๐‘˜)๐‘’1,๐‘–1โŠ—โ‹ฏโŠ—๐‘’๐‘˜,๐‘–๐‘˜

tensor-induced-quadratic-form_(tag)

derive the quadratic form ๐‘” of the vector space to the quadratic form of the tensor space ๐‘‰โŠ—๐ผโŠ—๐‘‰โŠบโŠ—๐ฝ

๐‘”(โจ‚๐‘–=1..๐ผ๐‘ฃ๐‘–โŠ—โจ‚๐‘—=1..๐‘—๐›ผ๐‘—,โจ‚๐‘–=1..๐ผ๐‘ค๐‘–โŠ—โจ‚๐‘—=1..๐‘—๐›ฝ๐‘—)=โˆ๐‘–=1..๐ผ๐‘”(๐‘ฃ๐‘–,๐‘ค๐‘–)โˆ๐‘–=1..๐ฝ๐‘”โˆ’1(๐›ผ๐‘—,๐›ฝ๐‘—)

Traverse all orthogonal bases โจ‚๐‘–=1..๐ผ๐‘’๐‘˜๐‘–โŠ—โจ‚๐‘—=1..๐ฝ๐‘’๐‘™๐‘— with

โŸจโจ‚๐‘–=1..๐ผ๐‘’๐‘˜๐‘–โŠ—โจ‚๐‘—=1..๐ฝ๐‘’๐‘™๐‘—โŸฉ2=โˆ๐‘–=1..๐ผโŸจ๐‘’๐‘˜๐‘–โŸฉ2โˆ๐‘—=1..๐ฝโŸจ๐‘’๐‘™๐‘—โŸฉ2

get signature

rasing-and-lowring-index-tensor_(tag) Tensors can also metric dual raise/lower indices

Example Lowering index ๐‘‡๐‘—๐‘–โ‡๐‘”๐‘–๐‘–โ€ฒ๐‘‡๐‘—๐‘–โ€ฒ=๐‘‡๐‘–๐‘—