1. notice
  2. äž­æ–‡
  3. 1. feature
  4. 逻蟑
  5. 2. 逻蟑
  6. 3. 集合论
  7. 4. 映射
  8. 5. 序
  9. 6. 组合
  10. 埮积分
  11. 7. 实数
  12. 8. 数列极限
  13. 9. ℝ^n
  14. 10. Euclidean 空闎
  15. 11. Minkowski 空闎
  16. 12. 倚项匏
  17. 13. 解析 (Euclidean)
  18. 14. 解析 (Minkowski)
  19. 15. 解析 struct 的操䜜
  20. 16. 垞埮分方皋
  21. 17. 䜓积
  22. 18. 积分
  23. 19. 散床
  24. 20. 眑极限
  25. 21. 玧臎
  26. 22. 连通
  27. 23. 拓扑 struct 的操䜜
  28. 24. 指数凜数
  29. 25. 角床
  30. 几䜕
  31. 26. 流圢
  32. 27. 床规
  33. 28. 床规的联络
  34. 29. Levi-Civita 富数
  35. 30. 床规的曲率
  36. 31. Einstein 床规
  37. 32. 垞截面曲率
  38. 33. simple-symmetric-space
  39. 34. 䞻䞛
  40. 35. 矀䜜甚
  41. 36. 球极投圱
  42. 37. Hopf 供
  43. 场论
  44. 38. 非盞对论点粒子
  45. 39. 盞对论点粒子
  46. 40. 纯量场
  47. 41. 纯量场的守恒流
  48. 42. 非盞对论纯量场
  49. 43. 光锥射圱
  50. 44. 时空劚量的自旋衚瀺
  51. 45. Lorentz 矀
  52. 46. 旋量场
  53. 47. 旋量场的守恒流
  54. 48. 电磁场
  55. 49. 匠量场的 Laplacian
  56. 50. Einstein 床规
  57. 51. 盞互䜜甚
  58. 52. 谐振子量子化
  59. 53. 参考
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. ℝ^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

Prop Generally, for 𝐎∈SL(2,ℂ), 𝐎,𝐎∗ are not equivalent in the sense of changing coordinates: There does not exist 𝐵∈GL(2,ℂ), 𝐎∗=𝐵⋅𝐎⋅𝐵−1

Proof

Eigenvalues remain unchanged under coordinate transformation

Generally, 𝐎,𝐎∗ have different eigenvalues

Example 𝐎=(2 i−12 i),𝐎∗=(−2 i12 i)

Prop 𝐎,(𝐎⊺)−1 are equivalent, 𝐎∗,𝐎† are equivalent

use j =(−11), j 2=−𝟙⟹ j −1=− j

j ⋅𝐎⋅ j −1=(𝐎⊺)−1

Its complex conjugate conjugate-representation_(tag)

j ⋅𝐎∗⋅ j −1=(𝐎†)−1

The above only works for dim =2

Second-order tensor, with one undergoing complex conjugation

(ℂ2,ℂ2)⟶⚂∗2ℂ2(𝑣,𝑀)⟿⚂∗2(𝑣,𝑀)=𝑣⊗𝑀∗

can be decompose to

Hermitian-tensor_(tag)

⹀∗2(𝑣,𝑀)=12(𝑣⊗𝑀∗+𝑀⊗𝑣∗)

anti-Hermitian-tensor_(tag)

⋀∗2(𝑣,𝑀)=12(𝑣⊗𝑀∗−𝑀⊗𝑣∗)

The conjugate modification in the other direction 𝑣∗⊗𝑀 is similar

Hermitian-tensor-induced-linear-map_(tag) The induced action of 𝐎∈GL(2,ℂ) on ⹂∗2ℂ2 :=

𝐎⊗∗2:⹂∗2(𝑣,𝑀)⇝⹂∗2(𝐎𝑣,𝐎𝑀)

(𝐎𝑣)∗=𝐎∗𝑣∗

⹂∗2(𝜆𝑣,𝜆𝑀)=|𝜆|2⹂∗2(𝑣,𝑀)

matrix-description-of-Hermitian-tensor_(tag)

Use tensor base

𝑣⊗𝑀∗=(∑𝑖𝑣𝑖𝑒𝑖)⊗(∑𝑗𝑀𝑗∗𝑒𝑗)=∑𝑖,𝑗𝑣𝑖𝑀𝑗∗(𝑒𝑖⊗𝑒𝑗)

Corresponding to the matrix representation

(𝑣1𝑀1∗𝑣1𝑀2∗𝑣2𝑀1∗𝑣2𝑀2∗)=(𝑣1𝑣2)(𝑀1∗𝑀2∗)=𝑣⋅𝑀†

Or written in Dirac notation

|𝑣⟩⟚𝑀|

The version without complex conjugation 𝑣⊗𝑀⟷𝑣⋅𝑀⊺

notation-overload: The space of matrix representation is also denoted as ⹂∗2(𝑣,𝑀)

Hermitian matrix

⹀∗2(𝑣,𝑀)=12(𝑣𝑀†+𝑀𝑣†)=Re(𝑣⋅𝑀†)⹀∗2(𝑣,𝑀)≕Re(⹂∗2(𝑣,𝑀))

anti-Hermitian matrix

⋀∗2(𝑣,𝑀)=12(𝑣𝑀†−𝑀𝑣†)=Im(𝑣⋅𝑀†)⋀∗2(𝑣,𝑀)≕Im(⹂∗2(𝑣,𝑀))

For ℍ,𝕆, since dim Im(ℍ), dim Im(𝕆)>1, the dimension of anti-Hermitian is higher than Hermitian

Hermitian-tensor-induced-linear-map-matrix_(tag) The matrix representation of 𝐎⊗∗2

𝑣⋅𝑀†⇝(𝐎𝑣)⋅(𝐎𝑀)†=𝐎(𝑣⋅𝑀†)𝐎†

𝐎⊗∗2 preserves the decomposition into Hermitian and anti-Hermitian

⹂∗2ℂ2=(⹀∗2ℂ2)⊕(⋀∗2ℂ2)

For general 𝑃∈⚂∗2ℂ2, there is also

𝐎⊗∗2:𝑃⇝𝐎𝑃𝐎†

The "matrix" representation of 𝕆 needs to be handled separately, the composition of Lin(2,𝕆) cannot be represented as usual matrix multiplication. It can still make 𝐎𝑃𝐎† well-defined

spacetime-momentum-spinor-representation_(tag)

(𝑝 represents "momentum" or "velocity" or tangent vector)

Bijection

⹀∗2ℂ2⟶ℝ1,3(𝑝0+𝑝1𝑝2+𝑝3 i𝑝2−𝑝3 i𝑝0−𝑝1)⟿(𝑝0𝑝1𝑝2𝑝3)

metric

det (𝑝0+𝑝1𝑝2+𝑝3 i𝑝2−𝑝3 i𝑝0−𝑝1)=(𝑝02−𝑝12)−(𝑝22+𝑝32)=|𝑝|2

let 𝑝spin ≔(𝑝0+𝑝1𝑝2+𝑝3 i𝑝2−𝑝3 i𝑝0−𝑝1) and 𝐎∈SL(2,ℂ), action 𝑝spin ⇝𝐎𝑝 spin 𝐎†

det 𝐎⊙∗2(𝑝spin)= det 𝐎𝑝 spin 𝐎†= det 𝑝 spin

Because multiplication is non-commutative, the general definition of det for ℍ,𝕆 is problematic. However, the definition of det 𝑝 spin does not require general multiplicative commutativity. At this time, SL(2,𝕂) is defined as 𝐎: det 𝐎𝑝 spin 𝐎†= det 𝑝 spin. This is not a good notation because it may not be generalized to dim >3

SL(2,ℍ),SL(2,𝕆) are also the spinor lifts of SO(1,5),SO(1,9). Similarly, SU(2,𝕂) is also the spinor lift of SO(5),SO(9)

Example Pauli-matrix_(tag) alias sigma-matrix_(tag)

for (𝑝0+𝑝1𝑝2+𝑝3 i𝑝2−𝑝3 i𝑝0−𝑝1)

  • time-like 𝑝0=1⟷(11)≕𝜎0
  • light-like 𝑝0=𝑝1=1⟷(20)=𝜎0+𝜎1
  • space-like

𝑝1=1⟷(1−1)≕𝜎1

𝑝2=1⟷(11)≕𝜎2

𝑝3=1⟷( i −i)≕𝜎3 (when generalized to ℍ,𝕆, it corresponds to all imaginary elements)

  • 𝑝spin =∑𝑝𝜇𝜎𝜇

  • det 𝜎0=1

  • det 𝜎𝑖=−1,𝑖=1,2,3

  • 𝜎0,𝜎1,𝜎2,𝜎3 is orthonormal base

  • 𝑝0+𝑝1 i  split ∈ℂ split ≃ℝ1,1

  • 𝑝2+𝑝3 i ∈ℂ≃ℝ2

Question What is the cognitive motivation for these constructions of ⹀∗2ℂ2,(𝑝0+𝑝1𝑝2+𝑝3 i𝑝2−𝑝3 i𝑝0−𝑝1), det 𝑝 spin =|𝑝|2?

  • SO(1,3)≃SL(2,ℂ)â„€2 #link(<Lorentz-group-spinor-representation>)[acts on] ℂℙ1 lifts to SL(2,ℂ) act on ℂ2
  • 𝐎 action, denoted as (12,0)
  • 𝐎∗ action, denoted as (0,12)

square-root-of-Lorentz-group_(tag)

SO(1,3) act on ℝ1,3 is some kind of "square" of 𝐎,𝐎∗, i.e. (12,0)⊗(0,12) or (12,12) represents the "real part" or "symmetric part"

Re(⹂∗2(𝑣,𝑀))⹀∗2ℂ2⟷ℝ1,3

Thus 𝐎,𝐎∗ are some kind of "square root" of SO(1,3) act on ℝ1,3

square-root-of-spacetime-metric-1_(tag) (inspired by ref-14, ch.11)

det ∈⋀2(ℂ2→ℂ),det(𝑣1,𝑣2)=𝑀⊺ j 𝑣, j =(−11)

det ⊗2(𝑣1⊗𝑀1,𝑣2⊗𝑀2)≔det(𝑣1,𝑣2)det(𝑀1,𝑀2). Note that it is not alternating for 𝑣1⊗𝑀1,𝑣2⊗𝑀2

metric 𝑔∈(⹀2ℝ1,3→ℝ) with ℝ1,3≃⹀∗2ℂ2 is some kind of "square" of det, i.e. 12𝑔≃ det⊙∗2

 det⊙∗2(⹀∗2(𝑣1,𝑀1),⹀∗2(𝑣2,𝑀2))=124(det(𝑣1,𝑣2)det(𝑀1∗,𝑀2∗)+det(𝑀1,𝑣2)det(𝑣1∗,𝑀2∗)+det(𝑣1,𝑀2)det(𝑀1∗,𝑣2∗)+det(𝑀1,𝑀2)det(𝑣1∗,𝑣2∗))

quadratic-form is

det⊙∗2(⹀∗2(𝑣,𝑀),⹀∗2(𝑣,𝑀))=−123|det(𝑣,𝑀)|2

cf. #link(<Pauli-matrix>)[]

𝑣𝑀⚀∗2(𝑣,𝑀)(10)(01)12𝜎2(10)(0i)12𝜎3(11)(1−1)𝜎1(10)(10)(10)(01)(01)(01)

The calculation shows that 12𝑔= det⊙∗2 is correct for 𝜎1,2,3. For 𝜎0, use sum ⹀∗2((10),(10))+⹀∗2((01),(01))

0= det⊙∗2(⹀∗2((10),(10)),⹀∗2((10),(10)))0= det⊙∗2(⹀∗2((01),(01)),⹀∗2((01),(01)))14= det⊙∗2(⹀∗2((10),(10)),⹀∗2((01),(01)))

orthogonal of sigma matrix can also be obtained through calculation, thus det ⊙∗2=12𝑔

Thus det is some kind of "square root" of metric 𝑔

Question Still no direct intuitive calculation equation det⊙∗2(∑𝑝𝜇𝜎𝜇,∑𝑝𝜇𝜎𝜇)=12det(∑𝑝𝜇𝜎𝜇) 


spacetime-momentum-aciton-spinor-representation_(tag)

let 𝑓:SL(2,ℂ),⹀∗2ℂ2↠SO(1,3),ℝ1,3.

where 𝑓(𝐎) is #link(<Lorentz-group-spinor-representation>)[]

𝑓(𝑝spin )=𝑝 is #link(<spacetime-momentum-spinor-representation>)[]

Then there is a homomorphism

𝑓(𝐎⊙∗2𝑝 spin)=𝑓(𝐎)𝑓(𝑝 spin )=𝑓(𝐎)𝑝

Proof Use the SL(2,ℂ)↠SO(1,3) correspondence of 3 rotations, 3 boosts

spinor-representation-adjoint_(tag) 𝑓(𝐎†)=𝑓(𝐎)⊺

Proof

use 3 boost, 3 rotation

use (𝐎𝐵)†=𝐵†𝐎†,(𝐎𝐵)⊺=𝐵⊺𝐎⊺

𝐎∈SO(1,3)⟹𝐎⊺𝜂𝐎=𝜂=(1−1−1−1), 𝑣⊺𝜂𝑀=𝑔(𝑣,𝑀)

𝐎⊺=𝜂𝐎−1𝜂

𝐎−1=𝜂𝐎⊺𝜂

𝑓(𝐎)⊺𝑓(𝑝 spin )=𝑓(𝐎†)𝑓(𝑝 spin )=𝑓(𝐎†𝑝 spin 𝐎)

Prop Use #link(<spacetime-momentum-spinor-representation>)[] for 𝑣⋅𝑀†, 𝑣=𝑀 + ℂ projection 𝜆𝑣 gives projective-lightcone

(∃𝑣∈ℂ2∖0,𝑝 spin =𝑣𝑣†)⟺(𝑝0>0, det (𝑝spin)=0)

Therefore the following are equivalent

  • SL(2,ℂ) act on ℂℙ1 via ℂ2
  • SL(2,ℂ) act on Cone-ℙ(1,3) via ⹀∗2ℂ2≃ℝ1,3

Proof

  • ⟹

𝑣𝑣†=(𝑣1𝑣2)(𝑣1∗𝑣2∗)=(𝑣1𝑣1∗𝑣1𝑣2∗𝑣2𝑣1∗𝑣2𝑣2∗) with det(𝑣𝑣†)=𝑣1𝑣1∗⋅𝑣2𝑣2∗−𝑣1𝑣2∗⋅𝑣2𝑣1∗=0 (requires ℂ associative law of multiplication?)

𝑝0=12tr(𝑣𝑣†)=12|𝑣|2>0

  • ⟾

Given 𝑝spin =(𝑝0+𝑝1𝑝2+𝑝3 i𝑝2−𝑝3 i𝑝0−𝑝1)≃(𝑝0𝑝1𝑝2𝑝3)

in ℂ, 𝑣𝑖=|𝑣𝑖|𝑒𝜃𝑖 i

let
|𝑣1|2=𝑝0+𝑝1
|𝑣2|2=𝑝0−𝑝1

Also need to calculate 𝜃1,𝜃2

In order to get 𝑝2+𝑝3 i =𝑣1𝑣2∗, compare norm, phase

𝑝2+𝑝3 i =|𝑝2+𝑝3 i|𝑝2+𝑝3 i|𝑝2+𝑝3 i|𝑣1𝑣2∗=|𝑣1||𝑣2|𝑒i (𝜃1−𝜃2)

norm

|𝑝2+𝑝3 i|2=𝑝22+𝑝32=𝑝02−𝑝12(use |𝑥|2=0)=|𝑣1|2|𝑣2|2=|𝑣1𝑣2∗|2

phase

arg(𝑝2+𝑝3 i|𝑝2+𝑝3 i|)∈ℝ

so let 𝜃1,𝜃2∈ℝ with 𝜃1−𝜃2=arg(𝑝2+𝑝3 i|𝑝2+𝑝3 i|)

Generally ⹀∗2(𝑣,𝑀)=(Re(𝑣1𝑀1∗)12(𝑣1𝑀2∗+𝑀1𝑣2∗)(
)∗Re(𝑣2𝑀2∗)). Compare (𝑝0+𝑝1𝑝2+𝑝3 i𝑝2−𝑝3 i𝑝0−𝑝1) to get

𝑝0=12Re(𝑣1𝑀1∗+𝑣2𝑀2∗)𝑝1=12Re(𝑣1𝑀1∗−𝑣2𝑀2∗)𝑝2=12Re(𝑣1𝑀2∗+𝑣2𝑀1∗)𝑝3=12Im(𝑣1𝑀2∗−𝑣2𝑀1∗)

parity_(tag)

parity corresponds to (12,0) vs (0,12) representation, or 𝐎 vs 𝐎∗,(𝐎†)−1, cf. #link(<conjugate-representation>)[]

let 𝑃∈⚀∗2ℂ2. 𝑃∗=𝑃⊺

𝑃◊≔ j ⋅𝑃∗⋅ j −1  with   j =(−11)

parity corresponds to space inversion

(𝑝0+𝑝1𝑝2+𝑝3 i𝑝2−𝑝3 i𝑝0−𝑝1)◊=(𝑝0−𝑝1−(𝑝2+𝑝3 i)−(𝑝2−𝑝3 i)𝑝0+𝑝1)⟷(𝑝0−𝑝2−𝑝3−𝑝1)

−𝑃◊ corresponds to time inversion

parity corresponds to trace or determinant reversal

determinant-reversal_(tag)

let 𝑃=(𝑎𝑏𝑐𝑑)∈Matrix(2,ℂ)

determinant reversal 𝑃◊≔(𝑑−𝑏−𝑐𝑎) with

𝑃𝑃◊=𝑃◊𝑃=det(𝑃)⋅𝟙

det 𝑃◊= det 𝑃

𝑃∈ GL ⟹𝑃◊=(det 𝑃)𝑃−1

trace-reversal_(tag) := 𝑃+𝑃◊=tr(𝑃)⋅𝟙. or 𝑃◊=(𝑑−𝑏−𝑐𝑎). tr 𝑃◊= tr 𝑃

dim =2 ==> determinant reversal is the same as trace reversal

square-root-of-spacetime-metric-2_(tag) a "square root" of 1,3 metric

let 𝑝spin ∈⹀∗2ℂ2≃ℝ1,3. det(𝑝spin )=𝑔(𝑝,𝑝)=|𝑝|2

|𝑝|2𝟙=det(𝑝 spin )𝟙=𝑝 spin ◊𝑝 spin =𝑝 spin 𝑝 spin◊

2𝑔(𝑝,𝑝′)=|𝑝+𝑝′|2−(|𝑝|2+|𝑝′|2) give

𝑔(𝑝,𝑝′)𝟙=12(𝑝spin ◊𝑝 spin ′+𝑝 spin ′◊𝑝 spin)=12(𝑝spin 𝑝 spin ′◊+𝑝 spin ′𝑝 spin◊)

Also have 𝑔(𝑝,𝑝′)=12Re(tr(𝑝spin ◊𝑝 spin′))=12Re(tr(𝑝spin 𝑝 spin′◊))

for #link(<Pauli-matrix>)[]

  • 𝜎𝜇◊𝜎𝜈+𝜎𝜈◊𝜎𝜇=2𝑔𝜇𝜈𝟙 or {𝜎𝜇,𝜎𝜈}◊=2𝑔𝜇𝜈𝟙

  • 𝜎0◊=𝜎0, 𝜎𝑖◊=−𝜎𝑖 for 𝑖=1,2,3 (because parity is spatial inversion)

A better explanation of this "square root"?

Direct matrix multiplication without parity will give the square root of the ℝ4 metric, with 𝜎𝜇2=𝟙, 𝜎𝜇−1=𝜎𝜇

This makes it possible for the spacetime momentum spin representation to be connected to the concept of classical fermions. Spinors belong to the light cone projection ℂℙ1. If 𝑝spin is on the light cone, then its square 12(𝑝spin ◊𝑝 spin +𝑝 spin 𝑝 spin◊)=𝑔(𝑝spin,𝑝spin)𝟙=0. This seems to be related to the Pauli exclusion principle. But note that, in general, 𝑔(𝑝spin,𝑝spin′)≠0 unless 𝑝spin,𝑝spin′ are collinear (#link(<signature-of-2d-subspace-of-spacetime>)[]). Therefore, the result of this multiplication, 𝑔(𝑝spin,𝑝spin′)𝟙≃(𝑔(𝑝spin,𝑝spin′)000), will not be on the light cone. If you want you can extend it to Clifford algebra

square-root-of-Lorentz-Lie-algebra_(tag) "square root" of spacetime Lie-algebra

[12𝜎𝜇,12𝜎𝜈]◊≔14(𝜎𝜇◊𝜎𝜈−𝜎𝜈◊𝜎𝜇)≃𝐿𝜇𝜈

where 𝐿𝜇𝜈 is #link(<rotation-boost-spinor-representation>)[Lorentz-Lie-algebra]

Proof

  • [12𝜎𝑖,12𝜎𝑖′]◊=12 i 𝜎𝑖″≃𝐿𝑖𝑖′ is ÎŽ rotation in 𝑝𝑖″ where 𝑖,𝑖′,𝑖″ is any cyclic 123

  • [12𝜎0,12𝜎𝑖]◊=12𝜎𝑖≃𝐿0𝑖 where 𝑖=1,2,3

Question A better explanation? Representation?

property-of-parity_(tag)

  • ∀𝑎,𝑏∈ℂ,(𝑎𝐎+𝑏𝐵)◊=𝑎𝐎◊+𝑏𝐵◊

  • (𝐎𝐵)◊=𝐵◊𝐎◊

  • 𝟙◊=𝟙

  • (𝐎†)◊=(𝐎◊)†

  • ◊:⹀∗2ℂ2→ self i.e. parity preserve Hermitian

  • 𝐎∈GL(2,ℂ)⟹𝐎◊=det(𝐎)⋅𝐎−1

  • 𝐎∈SL(2,ℂ)⟹𝐎◊=𝐎−1,𝐎𝐎◊=𝟙,(𝐎◊)◊=𝐎

parity-Euclidean-invariant_(tag) parity commutes with spatial action SU(2). In ℝ3, it manifests as −𝟙 and commutes with SO(3). let 𝑝∈ℝ3,𝐎∈SU(2)

𝐎∈SU(2)⟹𝐎†=𝐎−1=𝐎◊⟹(𝐎⊙∗2(𝑝 spin ))◊=𝐎⊙∗2(𝑝spin◊)

Generally, they do not commute, for example, 𝟙ℝ3 certainly does not commute with the time-changing part in SO(1,3)

let 𝑝spin =𝜎0=(11)=𝟙,𝐎=(𝑒𝜑2𝑒−𝜑2),𝐎†=𝐎

𝑝spin ◊=𝑝 spin

𝐎𝑝 spin 𝐎†=(𝑒𝜑𝑒−𝜑) or {𝑝0= cosh 𝜑𝑝1= sinh 𝜑𝑝2=𝑝3=0

(𝐎𝑝 spin 𝐎†)◊=(𝑒−𝜑𝑒𝜑) or {𝑝0= cosh 𝜑=cosh(−𝜑)𝑝1=−sinh 𝜑= sinh (−𝜑)

(𝐎𝑝 spin 𝐎†)◊≠𝐎𝑝 spin 𝐎†=𝐎𝑝 spin ◊𝐎†

parity-reverse-boost_(tag) The effect of parity on the Lie-algebra is that it does not change ή rotation, but multiplies ή boost by −1

Euclidean-spinor_(tag)

replace lightcone Cone-ℙ(1,3) with just sphere 𝕊2=ℂℙ1 acted by SO(3) and SU(2)

replace SL(2,ℂ)↠SO(1,3) with SU(2)↠SO(3), (𝑎𝑏−𝑏∗𝑎∗)∈SU(2) with |𝑎|2+|𝑏|2=1

use trace-free Hermitian (𝑝3𝑝1+𝑝2 i𝑝1−𝑝2 i−𝑝3)⟷(𝑝1𝑝2𝑝3)