cf. #link(<curvature-of-metric.typ>)[]
Einstein-Lagrangian
_(tag) := . ๅจๅๆ ไธญ
Question ็บฏ้ๆฒ็็จไบไฝ็จ้, ๆไปไนๅฅฝ็่งฃ้ๅ?
ไฝ็จ้ๅ ๅซ ็ไบ้ถๅพฎๅ, ๆไปฅไธ่ฝ็จไธ่ฌ็ไธ้ถๅพฎๅ action ็่ฎบ
scalar-curvature ไธๆฏ homology-scalar-curvature, ๅ่ ็็งฏๅ (ๆฏไพไบ ?) is homology invariant, ๆ ๆปๆฏๅๅๅฐ้ถ, have trivial eq
Prop ๅฏน ็ๅๅ
ๆไปฅ product rule ็ปๅบ
Prop Einstein-Lagrangian ไธญ
Proof
Prop ็ๅพฎๅๆฏ
Proof
and . ๆไปฅ
ๆไปฅ volume form ็ๅๅๆฏ
ๅฐ ไฝไธบ็ฉ้ต, ๅ adjoint ๅฏไปฅๅไธบ
Prop ็ๅพฎๅๆฏ . Proof ไฝฟ็จ
ๆไปฅ scalar-curvature ็ๅๅๆฏ
ๅฏนไปฅไธ่ฟ่ก็น็็่ฎก็ฎ
่ฟๅฏ่ฝๅฏน่ฎก็ฎๆฏๆ็จ็ and
ๆฏๆฃๅบฆ้ (cf. #link(<Laplacian-of-tensor-field.typ>)[]
for )
==>
ไปคไฝ็จ้็ๅๅๆฏ้ถ
forall , ๆไปฅ
Einstein-equation
_(tag) Einstein-metric
_(tag)
็ญไปทไบ (by taking )
with
i.e. ๅธธๅผๆฏไพไบ ไธ scalar-curvature ๆฏๅธธๆฐ
็ญไปทๅฐ
i.e. trace-free Ricci-curvature ๆฏ้ถ, ไธ scalar-curvature ๆฏๅธธๆฐ
Einstein-equation ๆฏ ็ไบ้ถ้็บฟๆง PDE
when , with
ๅญๅจ็ธไบไฝ็จๆถ, ๅฐฝ็ฎก , ไป็ถๆๆฃๅบฆๆฏ้ถ
Proof
ไธ้่ฆๆฏ Einstein-metric
ฮด diffeomorphism ไผ็ๆ metric ็ไธ้ถๆ ็ฉทๅฐ้
ๅ ไธบ Einstein ไฝ็จ้ๆฏๅพฎๅๅ่ไธๅ็, ๆไปฅ ฮด diffeomorphism ๅๅ็็ปๆๆฏ้ถ
forall , ๆไปฅ
่ฟๅฐไผ็ปๅบ
Prop ๅฏนไบ Einstein ไฝ็จ้, ฮด-isometry ็่ฝๅจๅผ ้ๅฐไผๆฏ้ถ
moduli-space-of-Einstein-metric := diffeomorphism ไฝ็จไบ metric ็ฉบ้ด็ orbit ็ฉบ้ด, ้ๅถๅจ Einstein-metric space. isotropy-group is isometry
Question ๅณไฝฟๆไปฌ็ฅ้ๆฏไธชๆตๅฝข็ๆๆ Einstein-metric, ไนไป็ถไธ็ฅ้ๅบ่ฏฅ้ๆฉๅชไธชๆตๅฝข
Question constant-sectional-curvature or simple-symmetric-space ็ๆตๅฝขๅ็ฑปไผผไนๆฏไปคไบบๆปกๆ็
ๅฝ dimension ๅญๅจๆตๅฝขไธๅ ่ฎธ constant-sectional-curvature metric ไฝๅ ่ฎธ Einstein-metric
Schwarzschild-metric
_(tag) in := ๆธ่ฟๅนณ็ด้ๆ็ๅฏน็งฐ, ไฝไธบ non-relativity gravity in ็ๆ็ฎๅๆจๅนฟ. ๅจ็ฉบ้ด ไฝฟ็จ็ๅๆ
with and . ไป่ๅชๆ conformal curvature
ๆจๅนฟๅฐ ?
Schwarzschild-metric-derivation
_(tag) (ref-9, ch.4)
ๅ่ฎพ metric ็ๅฏน็งฐ
็น็ฒๅญๅผๅๆบ i.e. ็น็ฒๅญไนๅค Einstein ๆน็จ with ็ปๅบ
ๆธ่ฟๅนณๅฆ i.e. ้ผ่ฟ metric when , ็ปๅบ , ็ถๅ Einstein ๆน็จ็ปๅบ
Schwarzschild-metric-approximate-to-Newton-gravity
_(tag)
ไธบไบ้ผ่ฟ non-relativity, ๆขๅคไธไบๅธธ้ . ๆญคๆถ Schwarzschild-metric
ๅจๆถ้ดๅๆ , ๅฏน่ฟไธช metric, ไป็ธๅฏน่ฎบ็น็ฒๅญไฝ็จ้่ฟไผผๅฐ้็ธๅฏน่ฎบ
- ๆฏ้่ฝ้, ๅฐไผๅๅๅฐ
- ๆฏ้็ธๅฏน่ฎบ็น็ฒๅญ็ๅจ่ฝ
- ๆฏ้็ธๅฏน่ฎบๅผๅๅฟ่ฝ
- ๅจๆ้ ๆถๆถๅคฑ
Question ๅฆๆๅผๅๆบๆฏ ๆ่ , ๅ metric ๆฏไปไน?
ไธไบ Einstein-metric ไพๅญ
#link(<constant-sectional-curvature-imply-Einstein-metric>)[ๅธธๅผๆช้ขๆฒ็]
#link(<simple-symmetric-space>)[]
Einstein ==> harmonics. Einstein-equation satisfy eq defined by Lagrangian