1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

projective-cone_(tag) (ๅ›พ)

  • Cone(๐‘,๐‘ž)โ‰”{๐‘ฅโˆˆโ„๐‘,๐‘ž:๐‘”(๐‘ฅ,๐‘ฅ)=0}
  • Cone-โ„™(๐‘,๐‘ž)โ‰”{[๐‘ฅ]โˆˆโ„โ„™๐‘+๐‘ž:๐‘ฅโˆˆย Cone(๐‘,๐‘ž)}

ๅฏไปฅ็ญ‰ไปทๅœฐ็†่งฃไธบ positive-cone & positive quotient

Cone-โ„™(๐‘,๐‘ž)โ‰ƒ{[๐œ†๐‘ฅ]:๐‘”(๐‘ฅ,๐‘ฅ)=0โˆง๐œ†>0}

็”ฑไบŽ metric ๅœจๅ…‰้”ฅไธŠๆ˜ฏ้›ถ, ๅพˆๅคšๅˆ†ๆžไธ่ƒฝๅš. ่€Œไธ”ๅ…‰้”ฅไธŠ็š„ๅฐ„็บฟ่ฟ›่กŒ quotient, ไนŸๅฏนๅบ” #link(<metric-cannot-distinguish-colinear-light-like>)[metric ๅฎŒๅ…จไธ่ƒฝๅŒบๅˆ†ๅ…ฑ็บฟ็š„็ฑปๅ…‰]

SO(๐‘,๐‘ž) ๅฏผๅ‡บ Cone-โ„™(๐‘,๐‘ž) ็š„ๅŒๅฐ„

Proof Cone-โ„™โŠ‚โ„โ„™,ย SOย โŠ‚ย GL, GL ๅฏผๅ‡บไธ€็ปดๅญ็ฉบ้—ด้›†็š„ๅŒๅฐ„

identity ๐Ÿ™โˆˆย GL induce ๐Ÿ™โˆˆโ„โ„™

complex-struct-of-4d-projective-lightcone_(tag) 4d projective-lightcone ็š„ๅค็ป“ๆž„ (ๅ›พ)

  • ๆคญๅœ†ๅž‹ Cone-โ„™(1,3)โ‰ƒ๐•Š2โ‰ƒโ„‚โ„™1
  • ๅŒๆ›ฒๅž‹ Cone-โ„™(1,3)โˆ–Cone-โ„™(1,2)โ‰ƒโ„๐•ช2
    ๅŒๆ›ฒๅž‹็š„ๆƒ…ๅ†ตๆœ‰ๅˆ†็ฆป็š„ไธคๆž. ไปŽๆœชๆฅๅ…‰้”ฅๆˆช้ขๅˆฐ่ฟ‡ๅŽปๅ…‰้”ฅๆˆช้ขไน‹้—ดๅญ˜ๅœจๅฅ‡็‚นๅŒบๅŸŸ Cone-โ„™(1,2)
    ๆ˜ฏๅฆๆœ‰ โ„‚โ„™1 ็ฑปไผผ็‰ฉ? ไฝ†ๆ˜ฏ โ„๐•ช2 ๆ˜ฏ Euclidean ๅž‹ๆตๅฝข, ไธ้€‚ๅˆๅˆ†่ฃ‚ๅคๆ•ฐ โ„‚split ็š„ 1,1 signature, ่€Œไธ” #link(<stereographic-projective-hyperbolic>)[ๅŒๆ›ฒ็ƒๆžๆŠ•ๅฝฑ] ไผผไนŽๆŒบๅคๆ‚็š„
    ๆ—ข็„ถๅ…‰้”ฅ่ƒฝๆˆชๅ‡บ ๐•Š2, ้‚ฃไนˆๅคฑๅŽป โ„๐•ช2=โ„š1,2(1) ๅฏนๅบ” โ„š1,2(โˆ’1) ็š„้‚ฃ็งๅฏน็งฐๆ€งๆ˜ฏๅˆ็†็š„

Proof

  • Cone-โ„™(1,3)โ‰ƒ๐•Š2

ไฝฟ็”จ ๐‘ฅ0=1 ๆˆชๅ– lightcone Cone(1,3)={๐‘ฅ02โˆ’(๐‘ฅ12+๐‘ฅ22+๐‘ฅ32)=0}, ๅพ—ๅˆฐ็ฑป็ฉบๆˆช้ข ๐•Š2={๐‘ฅ12+๐‘ฅ22+๐‘ฅ32=1}

1 ๅฏไปฅๆ›ฟๆขไธบๅ…ถๅฎƒ้ž้›ถๅฎžๆ•ฐ, ็ป“ๆžœ็ญ‰ไปท

  • Cone-โ„™(1,3)โˆ–Cone-โ„™(1,2)โ‰ƒโ„๐•ช2

ไฝฟ็”จ ๐‘ฅ1=1 ๆˆชๅ– lightcone, ๅพ—ๅˆฐ โ„๐•ช2={๐‘ฅ02โˆ’(๐‘ฅ22+๐‘ฅ32)=1}. ๅˆ†ไธบๆœชๆฅๅ’Œ่ฟ‡ๅŽปไธคๆž

Cone(1,2)={๐‘ฅ02โˆ’(๐‘ฅ22+๐‘ฅ32)=0} ็š„ๅฐ„ๅฝฑๆ— ๆณ•่ขซ ๐‘ฅ1=1 ๆˆชๅˆฐ

  • ๐•Š2โ‰ƒโ„‚โ„™1

#link(<stereographic-projection>)[็ƒๆžๆŠ•ๅฝฑ] transition-function ๆ˜ฏไบŒๆฌกๅž‹ๅๆผ”

โ„๐‘›โˆ’1โŸถโ„๐‘›โˆ’1๐œ‰โŸฟ1ยฑ๐‘ฅ11โˆ“๐‘ฅ1๐œ‰=๐œ‰|๐œ‰|2

โ„‚โ„™1={๐œ†(๐‘ง๐‘ค):(๐‘ง๐‘ค)โˆˆโ„‚2} and its coordinate

coordinate 1 {๐œ†(๐‘ง๐‘ค)โˆˆโ„‚2:๐‘คโ‰ 0}, coordinate map (๐‘ง๐‘ค)โ‡๐‘ง๐‘คโˆˆโ„‚

coordinate 2 {๐œ†(๐‘ง๐‘ค)โˆˆโ„‚2:๐‘งโ‰ 0}, coordinate map (๐‘ง๐‘ค)โ‡๐‘ค๐‘งโˆˆโ„‚

transition-function ๐‘ง๐‘คโ‡๐‘ค๐‘ง=(๐‘ง๐‘ค)โˆ’1, or ๐œ‰โ‡1๐œ‰=๐œ‰โˆ—|๐œ‰|2, i.e. โ„‚ ็š„ไน˜ๆณ•้€†. โ„‚โ„™1 ๆ˜ฏ complex manifold

vs ๐•Š2 ็ƒๆžๆŠ•ๅฝฑ transition-function ๐œ‰โ‡1๐œ‰โˆ—=๐œ‰|๐œ‰|2

ๆ›ด็›ดๆŽฅ็š„ โ„‚โ„™1โ†’๐•Š2 ๅๆ ‡ไน‹้—ด็š„ๆ˜ ๅฐ„, cf. #link(<Hopf-bundle>)[]

linear-fractional_(tag)

GL(2,โ„‚) ไฝœ็”จๅœจ โ„‚2, (๐‘ง๐‘ค)โ‡(๐‘Ž๐‘๐‘๐‘‘)(๐‘ง๐‘ค)=(๐‘Ž๐‘ง+๐‘๐‘ค๐‘๐‘ง+๐‘‘๐‘ค), ไฝฟ็”จ โ„‚ ไน˜ๆณ•้€†ๅฐ†ๅ…ถ้™ๅˆถไบŽ โ„‚โ„™1, in coordinate 1 {๐œ†(๐‘ง๐‘ค)โˆˆโ„‚2:๐‘คโ‰ 0}

โ„‚โ„™1,โŸถ,โ„‚โ„™1๐‘ง๐‘ค,โŸฟ,๐‘Ž๐‘ง+๐‘๐‘ค๐‘๐‘ง+๐‘‘๐‘ค=๐‘Ž๐‘ง๐‘ค+๐‘๐‘๐‘ง๐‘ค+๐‘‘

in coordinate 2 {๐œ†(๐‘ง๐‘ค)โˆˆโ„‚2:๐‘งโ‰ 0}

โ„‚โ„™1,โŸถ,โ„‚โ„™1๐‘ค๐‘ง,โŸฟ,๐‘๐‘ง+๐‘‘๐‘ค๐‘Ž๐‘ง+๐‘๐‘ค=๐‘+๐‘‘๐‘ค๐‘ง๐‘Ž+๐‘๐‘ค๐‘ง

(๐‘‘๐‘๐‘๐‘Ž) ๅธฆๆœ‰็›ธๅŒ็š„ det

๐•† ้œ€่ฆๅฆไฝœๅค„็†, Lin(2,๐•†) ๅคๅˆไธ่ƒฝ่กจ็คบไธบ้€šๅธธ็š„็Ÿฉ้˜ตไน˜ๆณ•

ไผธ็ผฉ ๐œ†โˆˆโ„‚โˆ–0,๐œ†(๐‘Ž๐‘๐‘๐‘‘) ็ป™ๅ‡บ็›ธๅŒ็š„ linear-fractional, ๆ‰€ไปฅ GL(2,โ„‚) ๅฏไปฅ quotient ๅˆฐ SL(2,โ„‚) or SL(2,โ„‚)โ„ค2

Prop (ref-13, p.172โ€“174)

  • SO(1,3) ไฝœ็”จไบŽ โ„‚โ„™1 in coordinate ๅฏไปฅ่กจ็คบไธบ SL(2,โ„‚) #link(<linear-fractional>)[]

  • SL(2,โ„‚)โ„ค2=SO(1,3) Lorentz-group-spinor-representation_(tag)

Proof

in โ„1,3, 3 rotation exp(๐œƒ๐‘–ย i), 3 boost exph(๐œ‘๐‘–ย iย split), where ๐œƒ๐‘– is rotation in ๐‘ฅ๐‘– direction, ๐œ‘๐‘– is boost in ๐‘ฅ๐‘– direction

rotation-boost-spinor-representation_(tag)

3 rotation 3 boost ไฝœ็”จๅœจๅฐ„ๅฝฑๅ…‰้”ฅ็š„ ๐‘ฅ0=1 ๆˆชๅ‡บๆฅ็š„ ๐•Š2, ่ฎก็ฎ—ๅ…ถๅœจ (ๅ…ถไธญไธ€ไธช) ็ƒๆžๆŠ•ๅฝฑๅๆ ‡ โ„2โ‰ƒโ„‚ ็š„่กจ็คบ

  • rotation in ๐‘ฅ1
  • ๐‘’๐œƒย i act on ๐‘ฅ2+๐‘ฅ3ย iย โˆˆโ„‚โ‰ƒโ„2
  • ๐ด=(๐‘’12๐œƒย i๐‘’โˆ’12๐œƒย i) act on โ„‚2, ็”Ÿๆˆๅ…ƒ 12ย iย (1โˆ’1)โˆˆsu(2) (with eigenvalue ยฑ12ย i and eigenstate (10),(01) as base of โ„‚2)
  • boost in ๐‘ฅ1
  • ๐‘’๐œ‘ย iย split act on ๐‘ฅ0+๐‘ฅ1ย iย ย splitย โˆˆโ„‚ย splitย โ‰ƒโ„1,1
  • ๐ด=(๐‘’12๐œ‘๐‘Žโˆ’12) act on โ„‚2, ็”Ÿๆˆๅ…ƒ 12(1โˆ’1)โˆˆย iย su(2)

ๅ› ไธบ้€‰ๆ‹ฉไบ† ๐‘ฅ1 ๆ–นๅ‘ๆฅๆž„้€ ็ƒๆžๆŠ•ๅฝฑ, ๐‘ฅ2,๐‘ฅ3 ๆ–นๅ‘็š„ๆƒ…ๅ†ตไผšๆ›ดๅคๆ‚ไธ€ไบ› (ไปฅไธ‹ๆˆ‘ๆฒกๆœ‰่ฟ›่กŒ่ฎก็ฎ—ๆฃ€้ชŒ)

  • rotation in ๐‘ฅ2

    (cosย 12๐œƒiย ย sinย 12๐œƒiย ย sinย 12๐œƒcosย 12๐œƒ) act on โ„‚2, ็”Ÿๆˆๅ…ƒ 12ย iย (11)โˆˆsu(2)

  • rotation in ๐‘ฅ3

    (cosย 12๐œƒโˆ’ย sinย 12๐œƒsinย 12๐œƒcosย 12๐œƒ) act on โ„‚2, ็”Ÿๆˆๅ…ƒ 12(โˆ’11)โˆˆsu(2)

  • boost in ๐‘ฅ2

    (coshย 12๐œƒsinhย 12๐œƒsinhย 12๐œƒcoshย 12๐œƒ) act on โ„‚2, ็”Ÿๆˆๅ…ƒ 12(11)โˆˆย iย su(2)

  • boost in ๐‘ฅ3

    (coshย 12๐œƒโˆ’ย iย ย sinhย 12๐œƒiย ย sinhย 12๐œƒcoshย 12๐œƒ) act on โ„‚2, ็”Ÿๆˆๅ…ƒ 12ย iย (โˆ’11)โˆˆย iย su(2)

ๅฏ่ง sl(2,โ„‚)=su(2)+ย iย su(2)

ๆฏ”่พƒ exp of sl(2,โ„‚) ๅ’Œ exp of so(1,3), ่‡ณๅฐ‘ๅฑ€้ƒจๅœฐๅŒๆž„ SL(2,โ„‚)โ†”SO(1,3)

  • for (๐‘Ž๐‘๐‘โˆ’๐‘Ž)โˆˆsl(2,โ„‚)

    expย (๐‘Ž๐‘๐‘โˆ’๐‘Ž)=ย coshย ๐œ”๐Ÿ™+sinhย ๐œ”๐œ”(๐‘Ž๐‘๐‘โˆ’๐‘Ž)

    where ๐œ”2=โˆ’ย detย (๐‘Ž๐‘๐‘โˆ’๐‘Ž)

  • so(1,3) have form (0๐‘โŠบ๐‘๐‘Ÿ) where ๐‘Ÿโˆˆso(3),๐‘โˆˆโ„3 (ref-2, Vol.1, p.180)

  • from SO(1,3) to SL(2,โ„‚). ไปŽๅŽ้ข็š„ SL(2,โ„‚) to SO(1,3) ไธญๅ่งฃๅ‡บๆฅ. ๆˆ–่€…็”จ SO(1,3) #link(<polar-decomposition-of-Lorentz-group>)[Polar decomposition] to rotation boost + #link(<Euler-angle-Lorentz-group>)[Euler ่ง’]

  • from ๐ด=(๐‘Ž๐‘๐‘๐‘‘)โˆˆSL(2,โ„‚) to ฮ›โˆˆSO(1,3), where ๐‘Ž๐‘‘โˆ’๐‘๐‘=1

ไฝฟ็”จ #link(<spacetime-momentum-spinor-representation>)[] ็›ดๆŽฅ่ฎก็ฎ— ๐ด๐‘ย spinย ๐ดโ€ โˆˆโ„1,3

ฮ›๐œˆ๐œ‡=12ย trย (๐œŽ๐œ‡๐ด๐œŽ๐œˆ๐ดโ€ )=12ย trย (๐ด๐œŽ๐œˆ๐ดโ€ ๐œŽ๐œ‡)=|๐‘Ž|2+|๐‘|2+|๐‘|2+|๐‘‘|22Re(๐‘Ž๐‘โˆ—+๐‘๐‘‘โˆ—)2Im(๐‘Ž๐‘โˆ—+๐‘๐‘‘โˆ—)|๐‘Ž|2โˆ’|๐‘|2+|๐‘2|โˆ’|๐‘‘|22Re(๐‘Ž๐‘โˆ—+๐‘๐‘‘โˆ—)2Re(๐‘Ž๐‘‘โˆ—+๐‘๐‘โˆ—)2Im(๐‘Ž๐‘‘โˆ—+๐‘๐‘โˆ—)2Re(๐‘Ž๐‘โˆ—โˆ’๐‘๐‘‘โˆ—)โˆ’2Im(๐‘Ž๐‘โˆ—+๐‘๐‘‘โˆ—)โˆ’2Im(๐‘Ž๐‘‘โˆ—+๐‘๐‘โˆ—)2Re(๐‘Ž๐‘‘โˆ—โˆ’๐‘๐‘โˆ—)โˆ’2Im(๐‘Ž๐‘โˆ—โˆ’๐‘๐‘‘โˆ—)|๐‘Ž|2+|๐‘|2โˆ’|๐‘|2โˆ’|๐‘‘|22Re(๐‘Ž๐‘โˆ—โˆ’๐‘๐‘‘โˆ—)2Im(๐‘Ž๐‘โˆ—โˆ’๐‘๐‘‘โˆ—)|๐‘Ž|2โˆ’|๐‘|2โˆ’|๐‘|2+|๐‘‘|2

โ„‚2,โ„‚โ„™1 ไฝฟ็”จ Euclidean type topology, ๅ› ไธบ ๐•Š2 metric ็ปงๆ‰ฟ่‡ช space-like {๐‘ฅ0=1}โ‰ƒโ„3โŠ‚โ„1,3 ็ปงๆ‰ฟ่‡ช โ„1,3 metric

SO(1,3) ๆ˜ฏ โ„‚โ„™1โ‰ƒ๐•Š2 conformal ๅ˜ๆข็พค, ๅœจ็ƒๆžๆŠ•ๅฝฑๅๆ ‡ไธญ่กจ็คบไธบ linear-fractional

ไธบ่ฎก็ฎ— metric ็š„ conformal ๅ˜ๆขๅ› ๅญ, use โ„‚โ„™1 coordinate and 3 rotation, 3 boost โ€ฆ

isotropy-on-projective-lightcone_(tag) Prop SL(2,โ„‚) ไฝœ็”จๅœจ projective-lightcone โ„‚โ„™1, #link(<isotropy>)[] ็ฑปไผผไบŽ GL(1,โ„‚)โ‹Šโ„‚

GL(2,โ„‚),SL(2,โ„‚) ๆ˜ฏ #link(<action-surjective>)[ๆปกๅฐ„ไฝœ็”จ], orbit ๆ•ฐ 1, ๆ‰€ไปฅ่ฎก็ฎ— isotropy #link(<isotropy-in-same-orbit-is-isom>)[ๅช้œ€่ฆ่€ƒ่™‘] ไธ€็‚น

ไฝฟ็”จ็‚น ๐‘ง=1,๐‘ค=0โˆˆโ„‚2, ๅœจๅๆ ‡ {๐œ†(๐‘ง๐‘ค)โˆˆโ„‚2:๐‘งโ‰ 0}, ๐‘ค๐‘ง=0, ๅฏนๅบ”ๅ…‰้”ฅๅฐ„ๅฝฑไธŠ็š„็‚น (1,1,0,0)โˆˆโ„1,3

(๐‘Ž๐‘๐‘๐‘‘) is isotropy ๐‘๐‘ง+๐‘‘๐‘ค๐‘Ž๐‘ง+๐‘๐‘ค=0 ==> ๐‘=0

ๆ‰€ไปฅ Isotropy

(๐‘Ž๐‘๐‘Žโˆ’1)

็ฑปไผผไบŽ GL(1,โ„‚)โ‹Šโ„‚ ๆ˜ฏๅ› ไธบ

(๐‘Ž0๐‘Žโˆ’1)(1๐‘1)(๐‘Ž0๐‘Žโˆ’1)โ€ =(1๐‘Ž2๐‘1)(1๐‘1)(1๐‘โ€ฒ1)=(1๐‘+๐‘โ€ฒ1)

the group multiplication is

(๐‘Ž๐‘๐‘Žโˆ’1)(๐‘Žโ€ฒ๐‘โ€ฒ๐‘Žโ€ฒโˆ’1)=(๐‘Ž๐‘Žโ€ฒ๐‘Ž๐‘โ€ฒ+๐‘Žโ€ฒโˆ’1๐‘(๐‘Ž๐‘Žโ€ฒ)โˆ’1))

ไฝฟ็”จๅฏนๅบ” ๐‘Žโ†’๐‘Ž12,๐‘โ†’๐‘๐‘Žโˆ’12 i.e. (๐‘Ž,๐‘)โ†’(๐‘Ž12๐‘๐‘Žโˆ’12๐‘Žโˆ’12) ๅฐ†ไผš็ป™ๅ‡บ้€šๅธธ็š„ semi-direct product Uย (1)โ‹Šโ„‚, i.e. (๐‘Ž,๐‘)(๐‘Žโ€ฒ,๐‘โ€ฒ)=(๐‘Žโ€ฒ๐‘Ž,๐‘โ€ฒ+๐‘๐‘Žโ€ฒ)