1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

affine-combination_(tag)

Affine combination

โˆ‘0..๐‘๐‘ก๐‘–โ‹…๐‘ฅ๐‘–๐‘ก0,โ€ฆ,๐‘ก๐‘โˆˆโ„,โˆ‘0..๐‘๐‘ก๐‘–=1

is a well-defined affine point, or rather the coordinate definition does not depend on the choice of origin. Let the coordinates of ๐‘ฅ๐‘– be ๐‘ฃ๐‘–. Change the origin ๐‘ฃ๐‘–โ€ฒ=๐‘ฃ๐‘–+ฮ”

โˆ‘๐‘ก๐‘–(๐‘ฃ๐‘–+ฮ”)=(โˆ‘๐‘ก๐‘–๐‘ฃ๐‘–)+(โˆ‘๐‘ก๐‘–)ฮ”=(โˆ‘๐‘ก๐‘–๐‘ฃ๐‘–)+ฮ”

Regarding intuition, the simplest example is the proportional point of a straight line between two points

Can be iteratively or decomposed e.g. triangle ๐‘ก1๐‘ฅ1+๐‘ก2๐‘ฅ2+๐‘ก3๐‘ฅ3โŸท๐‘ 1(๐‘ก1๐‘ฅ1+๐‘ก2๐‘ฅ2)+๐‘ 2๐‘ฅ3. And the decomposition operation is commutative. And it can be decomposed into multiple โ‰ฅ1 order

affine-coordinate_(tag) ๐‘ก๐‘– can be considered as a coordinate based on the point ๐‘ฅ๐‘–. Affine coordinates. alias Barycentric coordinates barycentric-coordinate_(tag)

affine-independent_(tag)

Affine independence := ๐‘ฅ๐‘˜ cannot be expressed as โˆ‘๐‘–=0..๐‘โˆ–๐‘˜๐‘ก๐‘–๐‘ฅ๐‘–

Affine independence corresponds to the linear independence of ๐‘ฅ๐‘–โˆ’๐‘ฅ0 after selecting one point e.g. ๐‘ฅ0 as the origin

If it is affine independent, then the vertices correspond to ๐‘ก๐‘˜=1โˆง๐‘ก1,โ€ฆ,๐‘โˆ–๐‘˜=0

An ๐‘›-dimensional affine space has at most ๐‘›+1 affine independent points

For the coordinates of ๐‘›+1 affine independent points of an ๐‘›-dimensional affine space ๐‘‰, ๐‘ก0,โ€ฆ,๐‘ก๐‘› have a one-to-one correspondence with the affine points of ๐‘‰

If ๐‘ก0,โ€ฆ,๐‘ก๐‘โˆˆโ„,โˆ‘0..๐‘๐‘ก๐‘–=0, although the coordinate โˆ‘๐‘ก๐‘–๐‘ฃ๐‘– will not change due to changing the origin, it is not an affine point

affine-map-point-ver_(tag) alias simplicial-map_(tag) Let ๐‘ฆ1,โ€ฆ,๐‘ฆ๐‘› be points in another affine space. The affine mapping is determined by ๐‘“(๐‘ฅ๐‘–)=๐‘ฆ๐‘–, and the situation of other points can be obtained by generating them through affine homomorphism

โˆ‘๐‘ก๐‘–๐‘ฅ๐‘–โ‡โˆ‘๐‘ก๐‘–๐‘ฆ๐‘–

center-of-affine-point-set_(tag) The center point of โˆ‘0..๐‘๐‘ก๐‘–=1 is ๐‘ก1=โ‹ฏ=๐‘ก๐‘›=1๐‘

convex-hull_(tag) := extra 0โ‰ค๐‘ก๐‘–โ‰ค1

simplex_(tag) := convex hull formed by affinely independent points

parallelogram_(tag) Due to symmetry, the description of parallelepiped can be simplified from the convex hull of 2๐‘› points to the description of ๐‘› points, after selecting the origin

๐‘ก1๐‘ฃ1+โ‹ฏ+๐‘ก๐‘›๐‘ฃ๐‘›,0โ‰ค๐‘ก๐‘–โ‰ค1

parallelogram-simplex-correspond_(tag)

A parallelepiped can be โจ† decomposed into ๐‘›! simplexes that are equivalent under translation and reflection

The ๐‘› permutations of points ๐‘ฃ1,โ€ฆ,๐‘ฃ๐‘›

๐‘ก๐‘–(1)๐‘ฃ๐‘–(1)+โ‹ฏ+๐‘ก๐‘–(๐‘›)๐‘ฃ๐‘–(๐‘›)0โ‰ค๐‘ก๐‘–(๐‘›)โ‰คโ‹ฏโ‰ค๐‘ก๐‘–(1)โ‰ค1

Corresponding simplex

๐‘ 00+๐‘ 1๐‘ฃ๐‘–(1)+(๐‘ 2๐‘ฃ๐‘–(1)+๐‘ฃ๐‘–(2))+โ‹ฏ+๐‘ ๐‘›(๐‘ฃ๐‘–(1)+โ‹ฏ+๐‘ฃ๐‘–(๐‘›))โˆ‘๐‘–=0..๐‘›๐‘ ๐‘–=1,0โ‰ค๐‘ ๐‘–โ‰ค1

with

๐‘ฃ๐‘–(๐‘›)=๐‘ ๐‘›๐‘ฃ๐‘–(๐‘›โˆ’1)=๐‘ ๐‘›+๐‘ ๐‘›โˆ’1โ‹ฎ๐‘ฃ๐‘–(1)=๐‘ ๐‘›+๐‘ ๐‘›โˆ’1+โ‹ฏ+๐‘ 1

Conversely, a simplex also gives many parallelepipeds with it as one of the ๐‘›! simplex blocks

The structural strength given by these two things is about the same

volume-of-parallelogram_(tag) Volume assumption for โ„๐‘›

  • Translation invariant
  • Reflection invariant (unsigned volume)
  • Finite โจ† -> finite volume โˆ‘
  • If ๐‘ฃ1,โ€ฆ,๐‘ฃ๐‘› are not linearly independent, then in the lower-dimensional subspace, so the ๐‘›-order volume is defined as zero

volume-of-simplex_(tag) is 1๐‘›! of volume-of-parallelogram

shear-transformation_(tag) After decomposing the parallelepiped into simplexes, cut and translate to form a new parallelepiped with the same volume. Called shear transformation. e.g. ๐‘ก1(๐‘ฃ1+๐‘ฃ2)+๐‘ก2๐‘ฃ2+โ‹ฏ+๐‘ก๐‘›๐‘ฃ๐‘›

(image from p.587 of ref-3)

Shear transformation volume invariance is algebraically e.g. (๐‘ฃ1+๐‘ฃ2)โˆง๐‘ฃ2โˆงโ‹ฏโˆง๐‘ฃ๐‘›=๐‘ฃ1โˆง๐‘ฃ2โˆงโ‹ฏโˆง๐‘ฃ๐‘› or detย (111โ‹ฑ1)=1

Scaling of edges โ„•,โ„ค,โ„š,โ„. e.g. โˆ€๐‘Žโˆˆโ„,Vol(๐‘Ž๐‘ฃ1,๐‘ฃ2,โ€ฆ,๐‘ฃ๐‘›)=๐‘ŽVol(๐‘ฃ1,๐‘ฃ2,โ€ฆ,๐‘ฃ๐‘›)

The stretching and shearing of parallelepipeds corresponds to the decomposition of GL(๐‘›,โ„) into elementary linear transformations, which is also used in Gaussian elimination (although they can be used for ๐‘šร—๐‘› matrices)

volume-determinant_(tag) The volume change of parallelepiped ๐‘ฃ1,โ€ฆ,๐‘ฃ๐‘› is ๐ดโˆˆGL(๐‘›,โ„),Vol(๐ด๐‘ฃ1,โ€ฆ,๐ด๐‘›๐‘ฃ๐‘›)=ย detย ๐ดVol(๐‘ฃ1,โ€ฆ,๐‘ฃ๐‘›)

Choose a basis ๐‘’1,โ€ฆ,๐‘’๐‘› of โ„๐‘›, the volume of the parallelepiped generated by it is 1, and the volume of other parallelepipeds ๐ด๐‘’1,โ€ฆ,๐ด๐‘’๐‘› is detย ๐ด

This is the oriented volume. ๐‘ฃ1โˆง๐‘ฃ2โˆงโ‹ฏโˆง๐‘ฃ๐‘›=โˆ’๐‘ฃ2โˆง๐‘ฃ1โˆงโ‹ฏโˆง๐‘ฃ๐‘› The set of parallelepipeds remains the same, so the absolute volume remains the same, but the directions of ๐‘ฃ1,๐‘ฃ2,โ€ฆ,๐‘ฃ๐‘› and ๐‘ฃ2,๐‘ฃ1,โ€ฆ,๐‘ฃ๐‘› are opposite

Oriented volume = Unoriented volume + Direction factor

๐‘ฃ1,โ€ฆ,๐‘ฃ๐‘› linearly dependent ==> in a lower-dimensional subspace ==> zero volume. At this time, ๐ดโˆˆย GL can be extended to ๐ดโˆˆย Lin, and zero volume algebraically corresponds to ๐ดโˆ‰ย GLย โŸบdet(๐ด)=0

For โ„๐‘›'s ๐‘˜-th order parallelepiped and simplex

Map the parallelepiped to โ„๐‘›'s ๐‘˜-th order alternating tensor (โ„๐‘›)โˆง๐‘˜'s decomposable element ๐‘ฃ1โˆงโ‹ฏโˆง๐‘ฃ๐‘˜

try-to-define-volume-of-low-dim_(tag) How to define low-dimensional volume? Consider two methods. Similar to linear form vs quadratic form. The first is like defining (๐‘ฃ1๐‘ฃ2) as ๐‘ฃ1+๐‘ฃ2 or |๐‘ฃ1+๐‘ฃ2|, the second is similar to defining (๐‘ฃ12+๐‘ฃ22)12 or |๐‘ฃ12โˆ’๐‘ฃ22|12

  1. A basis of โ„๐‘› gives a basis of the alternating tensor space ๐‘’๐‘–1โˆงโ‹ฏโˆง๐‘’๐‘–๐‘˜,๐‘–1<โ‹ฏ<๐‘–๐‘˜

Use it to define volume: For each ๐‘˜, a special alternating ๐‘˜ multilinear function or ๐‘˜ form of โ„๐‘› Vol๐‘›,๐‘˜, defined as Volย ๐‘›,๐‘˜(๐‘’๐‘–1โˆงโ‹ฏโˆง๐‘’๐‘–๐‘˜)=1, forall ๐‘–1<โ‹ฏ<๐‘–๐‘˜

So for a general parallelepiped ๐‘ฃ1โˆงโ‹ฏโˆง๐‘ฃ๐‘˜=(๐‘ฃ1๐‘–1๐‘’๐‘–1)โˆงโ‹ฏโˆง(๐‘ฃ๐‘˜๐‘–๐‘˜๐‘’๐‘–๐‘˜)=โˆ‘๐‘–1<โ‹ฏ<๐‘–๐‘˜detย (๐‘ฃ1๐‘–1โ‹ฏ๐‘ฃ๐‘˜๐‘–1โ‹ฎโ‹ฎ๐‘ฃ1๐‘–๐‘˜โ‹ฏ๐‘ฃ๐‘˜๐‘–๐‘˜)๐‘’๐‘–1โˆงโ‹ฏโˆง๐‘’๐‘–๐‘˜ the volume is

Vol(๐‘ฃ1โˆงโ‹ฏโˆง๐‘ฃ๐‘˜)โ‰”โˆ‘๐‘–1<โ‹ฏ<๐‘–๐‘˜detย (๐‘ฃ1๐‘–1โ‹ฏ๐‘ฃ๐‘˜๐‘–1โ‹ฎโ‹ฎ๐‘ฃ1๐‘–๐‘˜โ‹ฏ๐‘ฃ๐‘˜๐‘–๐‘˜)ย orย ย โ‰”|โˆ‘๐‘–1<โ‹ฏ<๐‘–๐‘˜detย (๐‘ฃ1๐‘–1โ‹ฏ๐‘ฃ๐‘˜๐‘–1โ‹ฎโ‹ฎ๐‘ฃ1๐‘–๐‘˜โ‹ฏ๐‘ฃ๐‘˜๐‘–๐‘˜)|

The volume of a nonzero decomposable alternating tensor can be zero, ๐ด=(10โˆ’11)โˆˆGL(2,โ„) such that Vol(2,1)(๐ด๐‘’1)=1โˆ’1=0. The shear transformation of order ๐‘› does not hold for order ๐‘˜

Question A special basis is selected, so what other bases have the same result? or what is the linear subgroup that keeps the volume unchanged?

SL(๐‘›,โ„) does not preserve ๐‘˜<๐‘› dimensional volume. e.g. (122) or (โˆ’1โˆ’1) does not preserve 1 dimensional volume

matrix ๐ด that preserves all order volumes ๐ด=(๐‘Ž11โ‹ฏ๐‘Ž๐‘›1โ‹ฎโ‹ฎ๐‘Ž1๐‘›โ‹ฏ๐‘Ž๐‘›๐‘›)โˆˆGL(๐‘›,โ„) satisfies, for ๐‘˜=1,โ€ฆ,๐‘› for ๐‘–1<โ‹ฏ<๐‘–๐‘˜, Vol๐‘›,๐‘˜(๐ด๐‘’๐‘–1โˆงโ‹ฏโˆง๐ด๐‘’๐‘–๐‘˜)=1, or โˆ‘๐‘—1<โ‹ฏ<๐‘—๐‘˜ย detย (๐‘Ž๐‘–1๐‘—1โ‹ฏ๐‘Ž๐‘–๐‘˜๐‘—๐‘–โ‹ฎโ‹ฎ๐‘Ž๐‘–1๐‘—๐‘˜โ‹ฏ๐‘Ž๐‘–๐‘˜๐‘—๐‘˜)=1

Example Vol๐‘›,1(๐ด๐‘’๐‘–)=๐‘Ž๐‘–1+โ‹ฏ+๐‘Ž๐‘–๐‘› (sum of elements in the ๐‘– th column). The ๐‘›โˆ’1 and 1 cases are similar, i.e. ๐‘Ž๐‘—๐‘– corresponds to the remaining subๅผ

(The cofactor is used in the 1,๐‘›โˆ’1 alternating tensor decomposition representation of det, which can be generalized to the ๐‘˜,๐‘›โˆ’๐‘˜ alternating tensor decomposition representation or Laplace expansion of det)

Example Vol2,1(๐ด๐‘’๐‘–)=๐‘Ž๐‘–1+๐‘Ž๐‘–2

matrix ๐ด preserves all โ„2 volumes ๐ด=(๐‘Ž11๐‘Ž21๐‘Ž12๐‘Ž22) satisfies

๐‘Ž11๐‘Ž22โˆ’๐‘Ž12๐‘Ž21=1๐‘Ž11+๐‘Ž12=1๐‘Ž21+๐‘Ž22=1

a coordinate representation of the solution

๐‘ฅโˆˆโ„๐‘Ž11=1โˆ’๐‘ฅ๐‘Ž12=๐‘ฅ๐‘Ž21=โˆ’๐‘ฅ๐‘Ž22=1+๐‘ฅ๐ด=(1โˆ’๐‘ฅโˆ’๐‘ฅ๐‘ฅ1+๐‘ฅ)

is an affine line of gl(2,โ„) passing through ๐Ÿ™=(11). SO(2) or SO(1,1) is not its subset

  1. Select a non-degenerate quadratic form

#link(<tensor-induced-quadratic-form>)[Derive] the quadratic form of the alternating space โŸจ๐‘ฃ1โˆงโ‹ฏโˆง๐‘ฃ๐‘˜โŸฉ2=ย detย โŸจ๐‘ฃ๐‘–,๐‘ฃ๐‘—โŸฉ. Undirected volume |detย โŸจ๐‘ฃ๐‘–,๐‘ฃ๐‘—โŸฉ|12 or |detย (โŸจ๐‘ฃ1,๐‘ฃ1โŸฉโ‹ฏโŸจ๐‘ฃ1,๐‘ฃ๐‘›โŸฉโ‹ฎโ‹ฎโŸจ๐‘ฃ๐‘›,๐‘ฃ1โŸฉโ‹ฏโŸจ๐‘ฃ๐‘›,๐‘ฃ๐‘›โŸฉ)|12. According to the orthonormal basis and its coefficients ๐‘ฃ1โˆงโ‹ฏโˆง๐‘ฃ๐‘˜=โˆ‘๐‘–1<โ‹ฏ<๐‘–๐‘˜ย detย (๐‘ฃ1๐‘–1โ‹ฏ๐‘ฃ๐‘˜๐‘–1โ‹ฎโ‹ฎ๐‘ฃ1๐‘–๐‘˜โ‹ฏ๐‘ฃ๐‘˜๐‘–๐‘˜)๐‘’๐‘–1โˆงโ‹ฏโˆง๐‘’๐‘–๐‘˜, write it as a standard quadratic form

โŸจ๐‘ฃ1โˆงโ‹ฏโˆง๐‘ฃ๐‘˜โŸฉ2=โˆ‘๐‘–1<โ‹ฏ<๐‘–๐‘˜(detย (๐‘ฃ1๐‘–1โ‹ฏ๐‘ฃ๐‘˜๐‘–1โ‹ฎโ‹ฎ๐‘ฃ1๐‘–๐‘˜โ‹ฏ๐‘ฃ๐‘˜๐‘–๐‘˜))2โŸจ๐‘’๐‘–1โˆงโ‹ฏโˆง๐‘’๐‘–๐‘˜โŸฉ2ย Vol๐‘›,๐‘˜(๐‘ฃ1โˆงโ‹ฏโˆง๐‘ฃ๐‘˜)โ‰”|โˆ‘๐‘–1<โ‹ฏ<๐‘–๐‘˜(detย (๐‘ฃ1๐‘–1โ‹ฏ๐‘ฃ๐‘˜๐‘–1โ‹ฎโ‹ฎ๐‘ฃ1๐‘–๐‘˜โ‹ฏ๐‘ฃ๐‘˜๐‘–๐‘˜))2โŸจ๐‘’๐‘–1โˆงโ‹ฏโˆง๐‘’๐‘–๐‘˜โŸฉ2|12

โŸจ๐‘ฃ1โˆงโ‹ฏโˆง๐‘ฃ๐‘›โŸฉ2=0 <==> volume is zero

In the non-Euclidean case, light-like will have an impact

Different signature volume definitions will be different for the same set of order ๐‘˜<๐‘›

The two volume definitions coincide for ๐‘˜=๐‘›

convex-hull-decomposition_(tag) convex hull optimal decomposition to simplex, the method is not unique. Troublesome combinatorial problem

Example

โ„2 's 4 points

โ„2 's 5 points. First select 2 simplex, that is, select 3 vertices

Find out which simplex combinations are decompositions of the convex hull

The intersection of convex hulls is a convex hull

Example

The reduced set of a simplex may not be a convex hull. But it can still be decomposed into simplex

Example

polyhedra_(tag) Polyhedron :=

n simplex finite union with

  • internally disjoint
  • transitively connected between two n simplex
  • the transitive boundary is n-1 simplex

The dimension of the transitive boundary is to give the polyhedron the best connectivity

low-dim-polyhedra_(tag) Low-dimensional sub-polyhedra. As a submanifold-like setting? i.e. Adjacent simplexes with ๐‘˜โˆ’1 boundaries in โ„๐‘˜ dimension have only two -> piecewise embedded in โ„๐‘›. Otherwise, consider the example of a three-connected boundary

Countable generalization -> Countable polyhedron

polyhedra-measurable_(tag)

Polyhedron measurable set ๐ด. Approximate with a countable polyhedron ๐‘ƒ, #link(<symmetric-set-minus>)[symmetric difference] ๐ดฮ”๐‘ƒ cover with countable simplexes as a measure estimate error

Sets ๐ด,๐ต define distance (ref-12)

๐‘‘(๐ด,๐ต)โ‰”infpolyhedraย ๐ถ๐ดฮ”๐ตโŠ‚๐ถVol(๐ถ)

Measurable set ๐ด := infpolyhedraย ๐‘ƒ๐‘‘(๐ด,๐‘ƒ)=0

Distance from set ๐ด to "origin" โˆ… is ๐ดฮ”โˆ…=๐ด and ๐‘‘(๐ด):=๐‘‘(๐ด,โˆ…)=infpolyhedraย ๐ถ๐ดโŠ‚๐ถVol(๐ถ)

๐‘‘(๐ดฮ”๐ต)=๐‘‘(๐ด,๐ต)

If ๐ดโŠ‚๐ดโ€ฒ then ๐‘‘(๐ด)โ‰ค๐‘‘(๐ดโ€ฒ)

๐‘‘(๐ดโˆช๐ดโ€ฒ)โ‰ค๐‘‘(๐ด)+๐‘‘(๐ดโ€ฒ) Proof by (๐ดโŠ‚๐‘ƒ)โˆง(๐ดโ€ฒโŠ‚๐‘ƒโ€ฒ)โŸน(๐ดโˆช๐ดโ€ฒ)โŠ‚(๐‘ƒโˆช๐‘ƒโ€ฒ)

Note that such measurable sets have good connectivity. In one dimension, there are only intervals, excluding the Smithโ€“Volterraโ€“Cantor set, etc. Operations such as the union of polyhedral measurable sets are also restricted.

Lebesgue-measurable_(tag) If transitive connectivity is not used, then the definition of a general measurable set is obtained. alias: Lebesgue measurable set. Non-measurable sets exist.

Lebesgue-measure_(tag)

The symmetric difference of sets satisfies

๐ตฮ”๐ตโ€ฒโŠ‚(๐ดฮ”๐ต)โˆช(๐ดฮ”๐ตโ€ฒ)

Corresponding triangle inequality ๐‘‘(๐ต,๐ตโ€ฒ)โ‰ค๐‘‘(๐ด,๐ต)+๐‘‘(๐ด,๐ตโ€ฒ)

Proof ๐ตโˆ–๐ตโ€ฒโŠ‚(๐ตโˆ–๐ด)โˆช(๐ดโˆ–๐ตโ€ฒ)

by

๐‘ฅโˆˆ๐ตโˆ–๐ตโ€ฒโŸบ๐‘ฅโˆˆ๐ตโˆง๐‘ฅโˆ‰๐ตโ€ฒโŸบ(๐‘ฅโˆˆ๐ตโˆง๐‘ฅโˆ‰๐ตโ€ฒ)โˆง(๐‘ฅโˆ‰๐ดโˆจ๐‘ฅโˆˆ๐ด)โŸบ(๐‘ฅโˆˆ๐ตโˆง๐‘ฅโˆ‰๐ตโ€ฒโˆง๐‘ฅโˆ‰๐ด)โˆจ(๐‘ฅโˆˆ๐ตโˆง๐‘ฅโˆ‰๐ตโ€ฒโˆง๐‘ฅโˆˆ๐ด)โŸน(๐‘ฅโˆˆ๐ตโˆง๐‘ฅโˆ‰๐ด)โˆจ(๐‘ฅโˆˆ๐ดโˆง๐‘ฅโˆ‰๐ตโ€ฒ)โŸบ๐‘ฅโˆˆ(๐ตโˆ–๐ด)โˆช(๐ดโˆ–๐ตโ€ฒ)

The other side is similar

Triangle inequality

๐‘‘(๐ต,๐ตโ€ฒ)=๐‘‘(๐ตฮ”๐ตโ€ฒ)โ‰ค๐‘‘((๐ดฮ”๐ต)โˆช(๐ดฮ”๐ตโ€ฒ))โ‰ค๐‘‘(๐ด,๐ต)+๐‘‘(๐ด,๐ตโ€ฒ)

For polyhedra ๐‘ƒ,๐‘ƒโ€ฒ with finite volume and ๐‘‘(๐ด,๐‘ƒ),๐‘‘(๐ด,๐‘ƒโ€ฒ)<๐œ€

Unique limit

|Vol(๐‘ƒ)โˆ’Vol(๐‘ƒโ€ฒ)|=Vol(๐‘ƒฮ”๐‘ƒโ€ฒ)=๐‘‘(๐‘ƒ,๐‘ƒโ€ฒ)โ‰ค๐‘‘(๐ด,๐‘ƒ)+๐‘‘(๐ด,๐‘ƒโ€ฒ)<2๐œ€

If we use the #link(<net>)[net] of a polyhedron approximating ๐ด, then there is a #link(<hom-limit>)[limit homomorphism] Vol(๐ด)โ‰”ย limย ๐‘‘(๐ด,๐‘ƒ)โ†’0Vol(๐‘ƒ)

Obtain the definition of finite measure. The definition of infinite measure comes from the countable approximation of finite measure, or โˆ‘๐‘›=1..โˆž๐œ€๐‘›<๐œ€ technique

try-to-define-low-dim-measure_(tag) Try to define โ„๐‘›'s ๐‘˜<๐‘› dimensional measurable set. Since the codimension of the ๐‘˜ region โ‰ 0, it is obvious that we cannot use set difference and simplex covering as measure estimation errors to approximate a general "๐‘˜ dimensional set"

pathologic-example-measure-of-boundary_(tag)

Using the Euclidean metric structure, some low-dimensional measurable sets can be defined, but there are still pathological examples (temporarily ignore the details, wiki it yourself)

  • Painter's paradox. Measure is finite but the measure of the boundary is infinite. Unbounded region is used
  • Koch snowflake. The measure is finite, but the measure of the boundary is either undefinable or infinite. Uses a boundary that is nowhere differentiable.

An example of approximating ๐‘› volume but not approximating the boundary volume

  • Schwarz Lantern
  • Infinite staircase approaching the hypotenuse of a triangle 2=2 or circle (๐œ‹=4) or as long as there is large normal oscillation, 2=๐œ‹=โˆž

measure-theoretic-boundary_(tag)

Measure theory boundary. Dimension โ€” some supremum ๐‘‘<๐‘› โ€” may not be a natural number but a real number

For measurable sets of polyhedra, intuitively, boundary = the maximum minus the minimum in the zero-measure set quotient of the measurable set โ‹ƒ[๐ด]โˆ–โ‹‚[๐ด]

For general measurable sets, intuitively, boundary =

{๐‘ฅโˆˆโ„๐‘›:ยฌย limย simpย โ†’๐‘ฅVol(๐ดโˆฉย simp)Vol(ย simpย )=0,1}

where simpย โ†’0 means that the overall scaling of a simplex centered on any ๐‘ฅ goes to zero

or boundary = neither inside nor outside. Inside = limit 1, outside = limit 0

Lebesgue differentiation theorem says that the measure of the boundary is zero

  • The interval division of the sides of a rectangle gives a rectangular product-style division
  • Connecting the center of a simplex to ๐‘› points has (๐‘›+1๐‘›)=๐‘› ways to divide a simplex into ๐‘› sub simplices
  • Or use the midpoint of all lower-dimensional simplices on the boundary