1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

Prop ไธ€่ˆฌๅœฐ, for ๐ดโˆˆSL(2,โ„‚), ๐ด,๐ดโˆ— ๅœจๆขๅๆ ‡็š„ๆ„ไน‰ไธ‹ไธ็ญ‰ไปท: ไธๅญ˜ๅœจ ๐ตโˆˆGL(2,โ„‚), ๐ดโˆ—=๐ตโ‹…๐ดโ‹…๐ตโˆ’1

Proof

็‰นๅพๅ€ผๆขๅๆ ‡ไธๅ˜

ไธ€่ˆฌๅœฐ, ๐ด,๐ดโˆ— ๆœ‰ไธๅŒ็š„็‰นๅพๅ€ผ

Example ๐ด=(2ย iโˆ’12ย i),๐ดโˆ—=(โˆ’2ย i12ย i)

Prop ๐ด,(๐ดโŠบ)โˆ’1 ็ญ‰ไปท, ๐ดโˆ—,๐ดโ€  ็ญ‰ไปท

use jย =(โˆ’11),ย jย 2=โˆ’๐Ÿ™โŸนย jย โˆ’1=โˆ’ย j

jย โ‹…๐ดโ‹…ย jย โˆ’1=(๐ดโŠบ)โˆ’1

ๅ…ถๅคๅ…ฑ่ฝญ conjugate-representation_(tag)

jย โ‹…๐ดโˆ—โ‹…ย jย โˆ’1=(๐ดโ€ )โˆ’1

ไปฅไธŠๅชๅฏน dimย =2 ่ตทไฝœ็”จ

ไบŒ้‡ๅผ ้‡, ๅ…ถไธญไธ€ไธช่ฟ›่กŒๅคๅ…ฑ่ฝญ

(โ„‚2,โ„‚2)โŸถโจ‚โˆ—2โ„‚2(๐‘ฃ,๐‘ค)โŸฟโจ‚โˆ—2(๐‘ฃ,๐‘ค)=๐‘ฃโŠ—๐‘คโˆ—

can be decompose to

Hermitian-tensor_(tag)

โจ€โˆ—2(๐‘ฃ,๐‘ค)=12(๐‘ฃโŠ—๐‘คโˆ—+๐‘คโŠ—๐‘ฃโˆ—)

anti-Hermitian-tensor_(tag)

โ‹€โˆ—2(๐‘ฃ,๐‘ค)=12(๐‘ฃโŠ—๐‘คโˆ—โˆ’๐‘คโŠ—๐‘ฃโˆ—)

ๅฏนๅฆไธ€ไธชๆ–นๅ‘็š„ๅ…ฑ่ฝญไฟฎๆ”น ๐‘ฃโˆ—โŠ—๐‘ค ๅŒ็†

Hermitian-tensor-induced-linear-map_(tag) ๐ดโˆˆGL(2,โ„‚) ๅœจ โจ‚โˆ—2โ„‚2 ็š„ๅฏผๅ‡บไฝœ็”จ :=

๐ดโŠ—โˆ—2:โจ‚โˆ—2(๐‘ฃ,๐‘ค)โ‡โจ‚โˆ—2(๐ด๐‘ฃ,๐ด๐‘ค)

(๐ด๐‘ฃ)โˆ—=๐ดโˆ—๐‘ฃโˆ—

โจ‚โˆ—2(๐œ†๐‘ฃ,๐œ†๐‘ค)=|๐œ†|2โจ‚โˆ—2(๐‘ฃ,๐‘ค)

matrix-description-of-Hermitian-tensor_(tag)

ไฝฟ็”จ tensor base

๐‘ฃโŠ—๐‘คโˆ—=(โˆ‘๐‘–๐‘ฃ๐‘–๐‘’๐‘–)โŠ—(โˆ‘๐‘—๐‘ค๐‘—โˆ—๐‘’๐‘—)=โˆ‘๐‘–,๐‘—๐‘ฃ๐‘–๐‘ค๐‘—โˆ—(๐‘’๐‘–โŠ—๐‘’๐‘—)

ๅฏนๅบ”ๅˆฐ็Ÿฉ้˜ต่กจ็คบ

(๐‘ฃ1๐‘ค1โˆ—๐‘ฃ1๐‘ค2โˆ—๐‘ฃ2๐‘ค1โˆ—๐‘ฃ2๐‘ค2โˆ—)=(๐‘ฃ1๐‘ฃ2)(๐‘ค1โˆ—๐‘ค2โˆ—)=๐‘ฃโ‹…๐‘คโ€ 

ๆˆ–่€…ๅ†™ไธบ Dirac ่ฎฐๅท

|๐‘ฃโŸฉโŸจ๐‘ค|

ๆ— ๅคๅ…ฑ่ฝญ็š„็‰ˆๆœฌ ๐‘ฃโŠ—๐‘คโŸท๐‘ฃโ‹…๐‘คโŠบ

notation-overload: ็Ÿฉ้˜ต่กจ็คบ็š„็ฉบ้—ดไนŸ่ฎฐไธบ โจ‚โˆ—2(๐‘ฃ,๐‘ค)

Hermitian ็Ÿฉ้˜ต

โจ€โˆ—2(๐‘ฃ,๐‘ค)=12(๐‘ฃ๐‘คโ€ +๐‘ค๐‘ฃโ€ )=Re(๐‘ฃโ‹…๐‘คโ€ )โจ€โˆ—2(๐‘ฃ,๐‘ค)โ‰•Re(โจ‚โˆ—2(๐‘ฃ,๐‘ค))

anti-Hermitian ็Ÿฉ้˜ต

โ‹€โˆ—2(๐‘ฃ,๐‘ค)=12(๐‘ฃ๐‘คโ€ โˆ’๐‘ค๐‘ฃโ€ )=Im(๐‘ฃโ‹…๐‘คโ€ )โ‹€โˆ—2(๐‘ฃ,๐‘ค)โ‰•Im(โจ‚โˆ—2(๐‘ฃ,๐‘ค))

ๅฏนไบŽ โ„,๐•†, ็”ฑไบŽ dimย Im(โ„),ย dimย Im(๐•†)>1, anti-Hermitian ็š„็ปดๆ•ฐ้ซ˜ไบŽ Hermitian

Hermitian-tensor-induced-linear-map-matrix_(tag) ๐ดโŠ—โˆ—2 ็š„็Ÿฉ้˜ต่กจ็คบ

๐‘ฃโ‹…๐‘คโ€ โ‡(๐ด๐‘ฃ)โ‹…(๐ด๐‘ค)โ€ =๐ด(๐‘ฃโ‹…๐‘คโ€ )๐ดโ€ 

๐ดโŠ—โˆ—2 ไฟๆŒๅˆ†่งฃๅˆฐ Hermitian and anti-Hermitian

โจ‚โˆ—2โ„‚2=(โจ€โˆ—2โ„‚2)โŠ•(โ‹€โˆ—2โ„‚2)

ๅฏนไบŽไธ€่ˆฌ็š„ ๐‘ƒโˆˆโจ‚โˆ—2โ„‚2, ไนŸๆœ‰

๐ดโŠ—โˆ—2:๐‘ƒโ‡๐ด๐‘ƒ๐ดโ€ 

๐•† ็š„ "็Ÿฉ้˜ต" ่กจ็คบ้œ€่ฆๅฆไฝœๅค„็†, Lin(2,๐•†) ๅคๅˆไธ่ƒฝ่กจ็คบไธบ้€šๅธธ็š„็Ÿฉ้˜ตไน˜ๆณ•. ไป็„ถ่ƒฝๅคŸ่ฎฉ ๐ด๐‘ƒ๐ดโ€  ่‰ฏๅฎšไน‰

spacetime-momentum-spinor-representation_(tag)

(๐‘ ไปฃ่กจ "ๅŠจ้‡" or "้€Ÿๅบฆ" or ๅˆ‡ๅ‘้‡)

ๅŒๅฐ„

โจ€โˆ—2โ„‚2โŸถโ„1,3(๐‘0+๐‘1๐‘2+๐‘3ย i๐‘2โˆ’๐‘3ย i๐‘0โˆ’๐‘1)โŸฟ(๐‘0๐‘1๐‘2๐‘3)

metric

detย (๐‘0+๐‘1๐‘2+๐‘3ย i๐‘2โˆ’๐‘3ย i๐‘0โˆ’๐‘1)=(๐‘02โˆ’๐‘12)โˆ’(๐‘22+๐‘32)=|๐‘|2

let ๐‘spinย โ‰”(๐‘0+๐‘1๐‘2+๐‘3ย i๐‘2โˆ’๐‘3ย i๐‘0โˆ’๐‘1) and ๐ดโˆˆSL(2,โ„‚), ไฝœ็”จ ๐‘spinย โ‡๐ด๐‘ย spinย ๐ดโ€ 

detย ๐ดโŠ™โˆ—2(๐‘spin)=ย detย ๐ด๐‘ย spinย ๐ดโ€ =ย detย ๐‘ย spin

็”ฑไบŽไน˜ๆณ•้žไบคๆข, โ„,๐•† ็š„ det ็š„ไธ€่ˆฌๅฎšไน‰ๆœ‰้—ฎ้ข˜. ไฝ†ๆ˜ฏ detย ๐‘ย spin ็š„ๅฎšไน‰ไธ้œ€่ฆไธ€่ˆฌไน˜ๆณ•ไบคๆขๆ€ง. ๆญคๆ—ถ SL(2,๐•‚) ๅฐฑๅฎšไน‰ไธบ ๐ด:ย detย ๐ด๐‘ย spinย ๐ดโ€ =ย detย ๐‘ย spin. ่ฟ™ไธๆ˜ฏๅฅฝ็š„่ฎฐๅท, ๅ› ไธบๅฏ่ƒฝๆ— ๆณ•ๆŽจๅนฟๅˆฐ dimย >3

SL(2,โ„),SL(2,๐•†) ไนŸๆ˜ฏ SO(1,5),SO(1,9) ็š„ spinor lift. ๅŒ็† SU(2,๐•‚) ไนŸๆ˜ฏ SO(5),SO(9) ็š„ spinor lift

Example Pauli-matrix_(tag) alias sigma-matrix_(tag)

for (๐‘0+๐‘1๐‘2+๐‘3ย i๐‘2โˆ’๐‘3ย i๐‘0โˆ’๐‘1)

  • time-like ๐‘0=1โŸท(11)โ‰•๐œŽ0
  • light-like ๐‘0=๐‘1=1โŸท(20)=๐œŽ0+๐œŽ1
  • space-like

๐‘1=1โŸท(1โˆ’1)โ‰•๐œŽ1

๐‘2=1โŸท(11)โ‰•๐œŽ2

๐‘3=1โŸท(ย iย โˆ’i)โ‰•๐œŽ3 (ๆŽจๅนฟๅˆฐ โ„,๐•† ๆ—ถ, ๅฏนๅบ”ๅ…จ้ƒจ่™šๆ•ฐๅ…ƒ)

  • ๐‘spinย =โˆ‘๐‘๐œ‡๐œŽ๐œ‡

  • detย ๐œŽ0=1

  • detย ๐œŽ๐‘–=โˆ’1,๐‘–=1,2,3

  • ๐œŽ0,๐œŽ1,๐œŽ2,๐œŽ3 is orthonormal base

  • ๐‘0+๐‘1ย iย ย splitย โˆˆโ„‚ย splitย โ‰ƒโ„1,1

  • ๐‘2+๐‘3ย iย โˆˆโ„‚โ‰ƒโ„2

Question โจ€โˆ—2โ„‚2,(๐‘0+๐‘1๐‘2+๐‘3ย i๐‘2โˆ’๐‘3ย i๐‘0โˆ’๐‘1),ย detย ๐‘ย spinย =|๐‘|2 ่ฟ™ไบ›ๆž„้€ ็š„่ฎค็ŸฅไธŠ็š„ๅŠจๆœบๆ˜ฏไป€ไนˆ?

  • SO(1,3)โ‰ƒSL(2,โ„‚)โ„ค2 #link(<Lorentz-group-spinor-representation>)[ไฝœ็”จๅœจ] โ„‚โ„™1 ๆๅ‡ๅˆฐ SL(2,โ„‚) act on โ„‚2
  • ๐ด action, denoted as (12,0)
  • ๐ดโˆ— action, denoted as (0,12)

square-root-of-Lorentz-group_(tag)

SO(1,3) act on โ„1,3 ๆ˜ฏ ๐ด,๐ดโˆ— ็š„ๆŸ็ง "ๅนณๆ–น", i.e. (12,0)โŠ—(0,12) or (12,12) ่กจ็คบ็š„ "real part" or "symmetric part"

Re(โจ‚โˆ—2(๐‘ฃ,๐‘ค))โจ€โˆ—2โ„‚2โŸทโ„1,3

ไปŽ่€Œ ๐ด,๐ดโˆ— ๆ˜ฏ SO(1,3) act on โ„1,3 ็š„ๆŸ็ง "ๅนณๆ–นๆ น"

square-root-of-spacetime-metric-1_(tag) (ๅฏๅ‘่‡ช ref-14, ch.11)

detย โˆˆโ‹€2(โ„‚2โ†’โ„‚),det(๐‘ฃ1,๐‘ฃ2)=๐‘คโŠบย jย ๐‘ฃ,ย jย =(โˆ’11)

detย โŠ—2(๐‘ฃ1โŠ—๐‘ค1,๐‘ฃ2โŠ—๐‘ค2)โ‰”det(๐‘ฃ1,๐‘ฃ2)det(๐‘ค1,๐‘ค2). ๆณจๆ„ๅฎƒไธๆ˜ฏๅฏน ๐‘ฃ1โŠ—๐‘ค1,๐‘ฃ2โŠ—๐‘ค2 ไบค้”™

metric ๐‘”โˆˆ(โจ€2โ„1,3โ†’โ„) with โ„1,3โ‰ƒโจ€โˆ—2โ„‚2 ๆ˜ฏ det ็š„ๆŸ็ง "ๅนณๆ–น", i.e. 12๐‘”โ‰ƒย detโŠ™โˆ—2

ย detโŠ™โˆ—2(โจ€โˆ—2(๐‘ฃ1,๐‘ค1),โจ€โˆ—2(๐‘ฃ2,๐‘ค2))=124(det(๐‘ฃ1,๐‘ฃ2)det(๐‘ค1โˆ—,๐‘ค2โˆ—)+det(๐‘ค1,๐‘ฃ2)det(๐‘ฃ1โˆ—,๐‘ค2โˆ—)+det(๐‘ฃ1,๐‘ค2)det(๐‘ค1โˆ—,๐‘ฃ2โˆ—)+det(๐‘ค1,๐‘ค2)det(๐‘ฃ1โˆ—,๐‘ฃ2โˆ—))

quadratic-form is

detโŠ™โˆ—2(โจ€โˆ—2(๐‘ฃ,๐‘ค),โจ€โˆ—2(๐‘ฃ,๐‘ค))=โˆ’123|det(๐‘ฃ,๐‘ค)|2

cf. #link(<Pauli-matrix>)[]

๐‘ฃ๐‘คโจ€โˆ—2(๐‘ฃ,๐‘ค)(10)(01)12๐œŽ2(10)(0i)12๐œŽ3(11)(1โˆ’1)๐œŽ1(10)(10)(10)(01)(01)(01)

่ฎก็ฎ—็ป“ๆžœ่ฏดๆ˜Ž 12๐‘”=ย detโŠ™โˆ—2 ๅฏนไบŽ ๐œŽ1,2,3 ๆ˜ฏๅฏน็š„. ๅฏนไบŽ ๐œŽ0, ไฝฟ็”จ sum โจ€โˆ—2((10),(10))+โจ€โˆ—2((01),(01))

0=ย detโŠ™โˆ—2(โจ€โˆ—2((10),(10)),โจ€โˆ—2((10),(10)))0=ย detโŠ™โˆ—2(โจ€โˆ—2((01),(01)),โจ€โˆ—2((01),(01)))14=ย detโŠ™โˆ—2(โจ€โˆ—2((10),(10)),โจ€โˆ—2((01),(01)))

orthogonal of sigma matrix ไนŸๅฏไปฅ้€š่ฟ‡่ฎก็ฎ—ๅพ—ๅˆฐ, ไปŽ่€Œ detย โŠ™โˆ—2=12๐‘”

ไปŽ่€Œ det ๆ˜ฏ metric ๐‘” ็š„ๆŸ็ง "ๅนณๆ–นๆ น"

Question ไป็„ถๆฒกๆœ‰็›ดๆŽฅ็ป™ๅ‡บ่ฎก็ฎ—็ญ‰ๅผ detโŠ™โˆ—2(โˆ‘๐‘๐œ‡๐œŽ๐œ‡,โˆ‘๐‘๐œ‡๐œŽ๐œ‡)=12det(โˆ‘๐‘๐œ‡๐œŽ๐œ‡) ็š„็›ด่ง‚ๅ— โ€ฆ

spacetime-momentum-aciton-spinor-representation_(tag)

let ๐‘“:SL(2,โ„‚),โจ€โˆ—2โ„‚2โ† SO(1,3),โ„1,3.

ๅ…ถไธญ ๐‘“(๐ด) ๆ˜ฏ #link(<Lorentz-group-spinor-representation>)[]

๐‘“(๐‘spinย )=๐‘ ๆ˜ฏ #link(<spacetime-momentum-spinor-representation>)[]

ๅˆ™ๆœ‰ๅŒๆ€

๐‘“(๐ดโŠ™โˆ—2๐‘ย spin)=๐‘“(๐ด)๐‘“(๐‘ย spinย )=๐‘“(๐ด)๐‘

Proof ไฝฟ็”จ 3 rotation, 3 boost ็š„ SL(2,โ„‚)โ† SO(1,3) ๅฏนๅบ”

spinor-representation-adjoint_(tag) ๐‘“(๐ดโ€ )=๐‘“(๐ด)โŠบ

Proof

use 3 boost, 3 rotation

use (๐ด๐ต)โ€ =๐ตโ€ ๐ดโ€ ,(๐ด๐ต)โŠบ=๐ตโŠบ๐ดโŠบ

๐ดโˆˆSO(1,3)โŸน๐ดโŠบ๐œ‚๐ด=๐œ‚=(1โˆ’1โˆ’1โˆ’1), ๐‘ฃโŠบ๐œ‚๐‘ค=๐‘”(๐‘ฃ,๐‘ค)

๐ดโŠบ=๐œ‚๐ดโˆ’1๐œ‚

๐ดโˆ’1=๐œ‚๐ดโŠบ๐œ‚

๐‘“(๐ด)โŠบ๐‘“(๐‘ย spinย )=๐‘“(๐ดโ€ )๐‘“(๐‘ย spinย )=๐‘“(๐ดโ€ ๐‘ย spinย ๐ด)

Prop ๅฐ† #link(<spacetime-momentum-spinor-representation>)[] ็”จไบŽ ๐‘ฃโ‹…๐‘คโ€ , ๐‘ฃ=๐‘ค + โ„‚ ๅฐ„ๅฝฑ ๐œ†๐‘ฃ ็ป™ๅ‡บ projective-lightcone

(โˆƒ๐‘ฃโˆˆโ„‚2โˆ–0,๐‘ย spinย =๐‘ฃ๐‘ฃโ€ )โŸบ(๐‘0>0,ย detย (๐‘spin)=0)

ๅ› ๆญคไปฅไธ‹็ญ‰ไปท

  • SL(2,โ„‚) act on โ„‚โ„™1 via โ„‚2
  • SL(2,โ„‚) act on Cone-โ„™(1,3) via โจ€โˆ—2โ„‚2โ‰ƒโ„1,3

Proof

  • โŸน

๐‘ฃ๐‘ฃโ€ =(๐‘ฃ1๐‘ฃ2)(๐‘ฃ1โˆ—๐‘ฃ2โˆ—)=(๐‘ฃ1๐‘ฃ1โˆ—๐‘ฃ1๐‘ฃ2โˆ—๐‘ฃ2๐‘ฃ1โˆ—๐‘ฃ2๐‘ฃ2โˆ—) with det(๐‘ฃ๐‘ฃโ€ )=๐‘ฃ1๐‘ฃ1โˆ—โ‹…๐‘ฃ2๐‘ฃ2โˆ—โˆ’๐‘ฃ1๐‘ฃ2โˆ—โ‹…๐‘ฃ2๐‘ฃ1โˆ—=0 (้œ€่ฆ โ„‚ ไน˜ๆณ•็ป“ๅˆๅพ‹?)

๐‘0=12tr(๐‘ฃ๐‘ฃโ€ )=12|๐‘ฃ|2>0

  • โŸธ

็ป™ๅฎš ๐‘spinย =(๐‘0+๐‘1๐‘2+๐‘3ย i๐‘2โˆ’๐‘3ย i๐‘0โˆ’๐‘1)โ‰ƒ(๐‘0๐‘1๐‘2๐‘3)

in โ„‚, ๐‘ฃ๐‘–=|๐‘ฃ๐‘–|๐‘’๐œƒ๐‘–ย i

let
|๐‘ฃ1|2=๐‘0+๐‘1
|๐‘ฃ2|2=๐‘0โˆ’๐‘1

่ฟ˜้œ€่ฆ่ฎก็ฎ— ๐œƒ1,๐œƒ2

ไธบไบ†ๅพ—ๅˆฐ ๐‘2+๐‘3ย iย =๐‘ฃ1๐‘ฃ2โˆ—, ๅฏนๆฏ” norm, phase

๐‘2+๐‘3ย iย =|๐‘2+๐‘3ย i|๐‘2+๐‘3ย i|๐‘2+๐‘3ย i|๐‘ฃ1๐‘ฃ2โˆ—=|๐‘ฃ1||๐‘ฃ2|๐‘’iย (๐œƒ1โˆ’๐œƒ2)

norm

|๐‘2+๐‘3ย i|2=๐‘22+๐‘32=๐‘02โˆ’๐‘12(useย |๐‘ฅ|2=0)=|๐‘ฃ1|2|๐‘ฃ2|2=|๐‘ฃ1๐‘ฃ2โˆ—|2

phase

arg(๐‘2+๐‘3ย i|๐‘2+๐‘3ย i|)โˆˆโ„

so let ๐œƒ1,๐œƒ2โˆˆโ„ with ๐œƒ1โˆ’๐œƒ2=arg(๐‘2+๐‘3ย i|๐‘2+๐‘3ย i|)

ไธ€่ˆฌๅœฐ โจ€โˆ—2(๐‘ฃ,๐‘ค)=(Re(๐‘ฃ1๐‘ค1โˆ—)12(๐‘ฃ1๐‘ค2โˆ—+๐‘ค1๐‘ฃ2โˆ—)(โ€ฆ)โˆ—Re(๐‘ฃ2๐‘ค2โˆ—)). ๆฏ”่พƒ (๐‘0+๐‘1๐‘2+๐‘3ย i๐‘2โˆ’๐‘3ย i๐‘0โˆ’๐‘1) ๅพ—ๅˆฐ

๐‘0=12Re(๐‘ฃ1๐‘ค1โˆ—+๐‘ฃ2๐‘ค2โˆ—)๐‘1=12Re(๐‘ฃ1๐‘ค1โˆ—โˆ’๐‘ฃ2๐‘ค2โˆ—)๐‘2=12Re(๐‘ฃ1๐‘ค2โˆ—+๐‘ฃ2๐‘ค1โˆ—)๐‘3=12Im(๐‘ฃ1๐‘ค2โˆ—โˆ’๐‘ฃ2๐‘ค1โˆ—)

parity_(tag)

parity ๅฏนๅบ”ๅˆฐ (12,0) vs (0,12) representation, or ๐ด vs ๐ดโˆ—,(๐ดโ€ )โˆ’1, cf. #link(<conjugate-representation>)[]

let ๐‘ƒโˆˆโจ€โˆ—2โ„‚2. ๐‘ƒโˆ—=๐‘ƒโŠบ

๐‘ƒโ—Šโ‰”ย jย โ‹…๐‘ƒโˆ—โ‹…ย jย โˆ’1ย ย withย ย ย jย =(โˆ’11)

parity ๅฏนๅบ”ๅˆฐ space inversion

(๐‘0+๐‘1๐‘2+๐‘3ย i๐‘2โˆ’๐‘3ย i๐‘0โˆ’๐‘1)โ—Š=(๐‘0โˆ’๐‘1โˆ’(๐‘2+๐‘3ย i)โˆ’(๐‘2โˆ’๐‘3ย i)๐‘0+๐‘1)โŸท(๐‘0โˆ’๐‘2โˆ’๐‘3โˆ’๐‘1)

โˆ’๐‘ƒโ—Š ๅฏนๅบ”ๅˆฐ time inversion

parity ๅฏนๅบ”ๅˆฐ trace or determinant reversal

determinant-reversal_(tag)

let ๐‘ƒ=(๐‘Ž๐‘๐‘๐‘‘)โˆˆMatrix(2,โ„‚)

determinant reversal ๐‘ƒโ—Šโ‰”(๐‘‘โˆ’๐‘โˆ’๐‘๐‘Ž) with

๐‘ƒ๐‘ƒโ—Š=๐‘ƒโ—Š๐‘ƒ=det(๐‘ƒ)โ‹…๐Ÿ™

detย ๐‘ƒโ—Š=ย detย ๐‘ƒ

๐‘ƒโˆˆย GLย โŸน๐‘ƒโ—Š=(detย ๐‘ƒ)๐‘ƒโˆ’1

trace-reversal_(tag) := ๐‘ƒ+๐‘ƒโ—Š=tr(๐‘ƒ)โ‹…๐Ÿ™. or ๐‘ƒโ—Š=(๐‘‘โˆ’๐‘โˆ’๐‘๐‘Ž). trย ๐‘ƒโ—Š=ย trย ๐‘ƒ

dimย =2 ==> determinant reversal ็›ธๅŒไบŽ trace reversal

square-root-of-spacetime-metric-2_(tag) 1,3 metric ็š„ไธ€็ง "ๅนณๆ–นๆ น"

let ๐‘spinย โˆˆโจ€โˆ—2โ„‚2โ‰ƒโ„1,3. det(๐‘spinย )=๐‘”(๐‘,๐‘)=|๐‘|2

|๐‘|2๐Ÿ™=det(๐‘ย spinย )๐Ÿ™=๐‘ย spinย โ—Š๐‘ย spinย =๐‘ย spinย ๐‘ย spinโ—Š

2๐‘”(๐‘,๐‘โ€ฒ)=|๐‘+๐‘โ€ฒ|2โˆ’(|๐‘|2+|๐‘โ€ฒ|2) give

๐‘”(๐‘,๐‘โ€ฒ)๐Ÿ™=12(๐‘spinย โ—Š๐‘ย spinย โ€ฒ+๐‘ย spinย โ€ฒโ—Š๐‘ย spin)=12(๐‘spinย ๐‘ย spinย โ€ฒโ—Š+๐‘ย spinย โ€ฒ๐‘ย spinโ—Š)

ไนŸๆœ‰ ๐‘”(๐‘,๐‘โ€ฒ)=12Re(tr(๐‘spinย โ—Š๐‘ย spinโ€ฒ))=12Re(tr(๐‘spinย ๐‘ย spinโ€ฒโ—Š))

for #link(<Pauli-matrix>)[]

  • ๐œŽ๐œ‡โ—Š๐œŽ๐œˆ+๐œŽ๐œˆโ—Š๐œŽ๐œ‡=2๐‘”๐œ‡๐œˆ๐Ÿ™ or {๐œŽ๐œ‡,๐œŽ๐œˆ}โ—Š=2๐‘”๐œ‡๐œˆ๐Ÿ™

  • ๐œŽ0โ—Š=๐œŽ0, ๐œŽ๐‘–โ—Š=โˆ’๐œŽ๐‘– for ๐‘–=1,2,3 (ๅ› ไธบ parity ๆ˜ฏ spatial inversion)

่ฟ™็ง "ๅนณๆ–นๆ น" ็š„ๆ›ดๅฅฝ็š„่งฃ้‡Š?

ๆฒกๆœ‰ parity ๆ—ถ็š„็›ดๆŽฅ็š„็Ÿฉ้˜ตไน˜ๆณ•ๅฐ†ไผš็ป™ๅ‡บ โ„4 metric ็š„ๅนณๆ–นๆ น, with ๐œŽ๐œ‡2=๐Ÿ™, ๐œŽ๐œ‡โˆ’1=๐œŽ๐œ‡

่ฟ™ไฝฟๅพ—ๆ—ถ็ฉบๅŠจ้‡่‡ชๆ—‹่กจ็คบๆœ‰ๅฏ่ƒฝ่”็ณปๅˆฐ็ปๅ…ธ fermion ็š„ๆฆ‚ๅฟต. ๆ—‹้‡ๅฑžไบŽๅ…‰้”ฅๅฐ„ๅฝฑ โ„‚โ„™1. ๅฆ‚ๆžœ ๐‘spin ๅœจๅ…‰้”ฅไธŠ, ้‚ฃไนˆๅ…ถๅนณๆ–น 12(๐‘spinย โ—Š๐‘ย spinย +๐‘ย spinย ๐‘ย spinโ—Š)=๐‘”(๐‘spin,๐‘spin)๐Ÿ™=0. ็œ‹่ตทๆฅ่ƒฝ่”็ณปๅˆฐ Pauli ไธ็›ธๅฎน็š„่ฆๆฑ‚. ไฝ†ๆณจๆ„, ไธ€่ˆฌๅœฐ ๐‘”(๐‘spin,๐‘spinโ€ฒ)โ‰ 0 ้™ค้ž ๐‘spin,๐‘spinโ€ฒ ๅ…ฑ็บฟ (#link(<signature-of-2d-subspace-of-spacetime>)[]). ๆ‰€ไปฅ่ฟ™็งไน˜ๆณ•็š„็ป“ๆžœ, ๐‘”(๐‘spin,๐‘spinโ€ฒ)๐Ÿ™โ‰ƒ(๐‘”(๐‘spin,๐‘spinโ€ฒ)000), ๅฐ†ไธไผšๅœจๅ…‰้”ฅไธŠ. ๆˆ–่€…ๅฆ‚ๆžœไฝ ๆ„ฟๆ„ๅœฐ่ฏ, ๅฐ†ๅ…ถๆ‹“ๅฑ•ๅˆฐ Clifford ไปฃๆ•ฐ

square-root-of-Lorentz-Lie-algebra_(tag) spacetime Lie-algebra ็š„ "ๅนณๆ–นๆ น"

[12๐œŽ๐œ‡,12๐œŽ๐œˆ]โ—Šโ‰”14(๐œŽ๐œ‡โ—Š๐œŽ๐œˆโˆ’๐œŽ๐œˆโ—Š๐œŽ๐œ‡)โ‰ƒ๐ฟ๐œ‡๐œˆ

where ๐ฟ๐œ‡๐œˆ is #link(<rotation-boost-spinor-representation>)[Lorentz-Lie-algebra]

Proof

  • [12๐œŽ๐‘–,12๐œŽ๐‘–โ€ฒ]โ—Š=12ย iย ๐œŽ๐‘–โ€ณโ‰ƒ๐ฟ๐‘–๐‘–โ€ฒ is ฮด rotation in ๐‘๐‘–โ€ณ where ๐‘–,๐‘–โ€ฒ,๐‘–โ€ณ is any cyclic 123

  • [12๐œŽ0,12๐œŽ๐‘–]โ—Š=12๐œŽ๐‘–โ‰ƒ๐ฟ0๐‘– where ๐‘–=1,2,3

Question ๆ›ดๅฅฝ็š„่งฃ้‡Š? ่กจ็คบ?

property-of-parity_(tag)

  • โˆ€๐‘Ž,๐‘โˆˆโ„‚,(๐‘Ž๐ด+๐‘๐ต)โ—Š=๐‘Ž๐ดโ—Š+๐‘๐ตโ—Š

  • (๐ด๐ต)โ—Š=๐ตโ—Š๐ดโ—Š

  • ๐Ÿ™โ—Š=๐Ÿ™

  • (๐ดโ€ )โ—Š=(๐ดโ—Š)โ€ 

  • โ—Š:โจ€โˆ—2โ„‚2โ†’ย self i.e. parity ไฟๆŒ Hermitian

  • ๐ดโˆˆGL(2,โ„‚)โŸน๐ดโ—Š=det(๐ด)โ‹…๐ดโˆ’1

  • ๐ดโˆˆSL(2,โ„‚)โŸน๐ดโ—Š=๐ดโˆ’1,๐ด๐ดโ—Š=๐Ÿ™,(๐ดโ—Š)โ—Š=๐ด

parity-Euclidean-invariant_(tag) parity ๅ’Œ spatial action SU(2) ไบคๆข. ๅœจ โ„3 ไธญ่กจ็Žฐไธบ โˆ’๐Ÿ™ ๅ’Œ SO(3) ไบคๆข. let ๐‘โˆˆโ„3,๐ดโˆˆSU(2)

๐ดโˆˆSU(2)โŸน๐ดโ€ =๐ดโˆ’1=๐ดโ—ŠโŸน(๐ดโŠ™โˆ—2(๐‘ย spinย ))โ—Š=๐ดโŠ™โˆ—2(๐‘spinโ—Š)

ไธ€่ˆฌๆƒ…ๅ†ตไธ‹ไธไบคๆข, ไพ‹ๅฆ‚ ๐Ÿ™โ„3 ๅฝ“็„ถไธไบคๆขไบŽ SO(1,3) ไธญ็š„ๆ—ถ้—ดๆ”นๅ˜้ƒจๅˆ†

let ๐‘spinย =๐œŽ0=(11)=๐Ÿ™,๐ด=(๐‘’๐œ‘2๐‘’โˆ’๐œ‘2),๐ดโ€ =๐ด

๐‘spinย โ—Š=๐‘ย spin

๐ด๐‘ย spinย ๐ดโ€ =(๐‘’๐œ‘๐‘’โˆ’๐œ‘) or {๐‘0=ย coshย ๐œ‘๐‘1=ย sinhย ๐œ‘๐‘2=๐‘3=0

(๐ด๐‘ย spinย ๐ดโ€ )โ—Š=(๐‘’โˆ’๐œ‘๐‘’๐œ‘) or {๐‘0=ย coshย ๐œ‘=cosh(โˆ’๐œ‘)๐‘1=โˆ’sinhย ๐œ‘=ย sinhย (โˆ’๐œ‘)

(๐ด๐‘ย spinย ๐ดโ€ )โ—Šโ‰ ๐ด๐‘ย spinย ๐ดโ€ =๐ด๐‘ย spinย โ—Š๐ดโ€ 

parity-reverse-boost_(tag) parity ๅฏน Lie-algebra ็š„ๅฝฑๅ“ๆ˜ฏ, ไธๆ”นๅ˜ ฮด ๆ—‹่ฝฌ, ๅฏน ฮด boost ไน˜ โˆ’1

Euclidean-spinor_(tag)

replace lightcone Cone-โ„™(1,3) with just sphere ๐•Š2=โ„‚โ„™1 acted by SO(3) and SU(2)

replace SL(2,โ„‚)โ† SO(1,3) with SU(2)โ† SO(3), (๐‘Ž๐‘โˆ’๐‘โˆ—๐‘Žโˆ—)โˆˆSU(2) with |๐‘Ž|2+|๐‘|2=1

use trace-free Hermitian (๐‘3๐‘1+๐‘2ย i๐‘1โˆ’๐‘2ย iโˆ’๐‘3)โŸท(๐‘1๐‘2๐‘3)