Prop ไธ่ฌๅฐ, for , ๅจๆขๅๆ ็ๆไนไธไธ็ญไปท: ไธๅญๅจ ,
Proof
็นๅพๅผๆขๅๆ ไธๅ
ไธ่ฌๅฐ, ๆไธๅ็็นๅพๅผ
Example
Prop ็ญไปท, ็ญไปท
use
ๅ
ถๅคๅ
ฑ่ฝญ conjugate-representation
_(tag)
ไปฅไธๅชๅฏน ่ตทไฝ็จ
ไบ้ๅผ ้, ๅ
ถไธญไธไธช่ฟ่กๅคๅ
ฑ่ฝญ
can be decompose to
Hermitian-tensor
_(tag)
anti-Hermitian-tensor
_(tag)
ๅฏนๅฆไธไธชๆนๅ็ๅ
ฑ่ฝญไฟฎๆน ๅ็
Hermitian-tensor-induced-linear-map
_(tag) ๅจ ็ๅฏผๅบไฝ็จ :=
matrix-description-of-Hermitian-tensor
_(tag)
ไฝฟ็จ tensor base
ๅฏนๅบๅฐ็ฉ้ต่กจ็คบ
ๆ่
ๅไธบ Dirac ่ฎฐๅท
ๆ ๅคๅ
ฑ่ฝญ็็ๆฌ
notation-overload: ็ฉ้ต่กจ็คบ็็ฉบ้ดไน่ฎฐไธบ
Hermitian ็ฉ้ต
anti-Hermitian ็ฉ้ต
ๅฏนไบ , ็ฑไบ , anti-Hermitian ็็ปดๆฐ้ซไบ Hermitian
Hermitian-tensor-induced-linear-map-matrix
_(tag) ็็ฉ้ต่กจ็คบ
ไฟๆๅ่งฃๅฐ Hermitian and anti-Hermitian
ๅฏนไบไธ่ฌ็ , ไนๆ
็ "็ฉ้ต" ่กจ็คบ้่ฆๅฆไฝๅค็, ๅคๅไธ่ฝ่กจ็คบไธบ้ๅธธ็็ฉ้ตไนๆณ. ไป็ถ่ฝๅค่ฎฉ ่ฏๅฎไน
spacetime-momentum-spinor-representation
_(tag)
( ไปฃ่กจ "ๅจ้" or "้ๅบฆ" or ๅๅ้)
ๅๅฐ
metric
let and , ไฝ็จ
็ฑไบไนๆณ้ไบคๆข, ็ ็ไธ่ฌๅฎไนๆ้ฎ้ข. ไฝๆฏ ็ๅฎไนไธ้่ฆไธ่ฌไนๆณไบคๆขๆง. ๆญคๆถ ๅฐฑๅฎไนไธบ . ่ฟไธๆฏๅฅฝ็่ฎฐๅท, ๅ ไธบๅฏ่ฝๆ ๆณๆจๅนฟๅฐ
ไนๆฏ ็ spinor lift. ๅ็ ไนๆฏ ็ spinor lift
Example Pauli-matrix
_(tag) alias sigma-matrix
_(tag)
for
- time-like
- light-like
- space-like
(ๆจๅนฟๅฐ ๆถ, ๅฏนๅบๅ
จ้จ่ๆฐๅ
)
-
-
-
-
is orthonormal base
-
-
Question ่ฟไบๆ้ ็่ฎค็ฅไธ็ๅจๆบๆฏไปไน?
-
#link(<Lorentz-group-spinor-representation>)[ไฝ็จๅจ]
ๆๅๅฐ act on
- action, denoted as
- action, denoted as
square-root-of-Lorentz-group
_(tag)
act on ๆฏ ็ๆ็ง "ๅนณๆน", i.e. or ่กจ็คบ็ "real part" or "symmetric part"
ไป่ ๆฏ act on ็ๆ็ง "ๅนณๆนๆ น"
square-root-of-spacetime-metric-1
_(tag) (ๅฏๅ่ช ref-14, ch.11)
. ๆณจๆๅฎไธๆฏๅฏน ไบค้
metric with ๆฏ ็ๆ็ง "ๅนณๆน", i.e.
quadratic-form is
cf. #link(<Pauli-matrix>)[]
่ฎก็ฎ็ปๆ่ฏดๆ ๅฏนไบ ๆฏๅฏน็. ๅฏนไบ , ไฝฟ็จ sum
orthogonal of sigma matrix ไนๅฏไปฅ้่ฟ่ฎก็ฎๅพๅฐ, ไป่
ไป่ ๆฏ metric ็ๆ็ง "ๅนณๆนๆ น"
Question ไป็ถๆฒกๆ็ดๆฅ็ปๅบ่ฎก็ฎ็ญๅผ ็็ด่งๅ โฆ
spacetime-momentum-aciton-spinor-representation
_(tag)
let .
ๅ
ถไธญ ๆฏ #link(<Lorentz-group-spinor-representation>)[]
ๆฏ #link(<spacetime-momentum-spinor-representation>)[]
ๅๆๅๆ
Proof ไฝฟ็จ 3 rotation, 3 boost ็ ๅฏนๅบ
spinor-representation-adjoint
_(tag)
Proof
use 3 boost, 3 rotation
use
,
Prop ๅฐ #link(<spacetime-momentum-spinor-representation>)[]
็จไบ , + ๅฐๅฝฑ ็ปๅบ projective-lightcone
ๅ ๆญคไปฅไธ็ญไปท
- act on via
- act on via
Proof
with (้่ฆ ไนๆณ็ปๅๅพ?)
็ปๅฎ
in ,
let
่ฟ้่ฆ่ฎก็ฎ
ไธบไบๅพๅฐ , ๅฏนๆฏ norm, phase
norm
phase
so let with
ไธ่ฌๅฐ . ๆฏ่พ ๅพๅฐ
parity
_(tag)
parity ๅฏนๅบๅฐ vs representation, or vs , cf. #link(<conjugate-representation>)[]
let .
parity ๅฏนๅบๅฐ space inversion
ๅฏนๅบๅฐ time inversion
parity ๅฏนๅบๅฐ trace or determinant reversal
determinant-reversal
_(tag)
let
determinant reversal with
trace-reversal
_(tag) := . or .
==> determinant reversal ็ธๅไบ trace reversal
square-root-of-spacetime-metric-2
_(tag) metric ็ไธ็ง "ๅนณๆนๆ น"
let .
give
ไนๆ
for #link(<Pauli-matrix>)[]
-
or
-
, for (ๅ ไธบ parity ๆฏ spatial inversion)
่ฟ็ง "ๅนณๆนๆ น" ็ๆดๅฅฝ็่งฃ้?
ๆฒกๆ parity ๆถ็็ดๆฅ็็ฉ้ตไนๆณๅฐไผ็ปๅบ metric ็ๅนณๆนๆ น, with ,
่ฟไฝฟๅพๆถ็ฉบๅจ้่ชๆ่กจ็คบๆๅฏ่ฝ่็ณปๅฐ็ปๅ
ธ fermion ็ๆฆๅฟต. ๆ้ๅฑไบๅ
้ฅๅฐๅฝฑ . ๅฆๆ ๅจๅ
้ฅไธ, ้ฃไนๅ
ถๅนณๆน . ็่ตทๆฅ่ฝ่็ณปๅฐ Pauli ไธ็ธๅฎน็่ฆๆฑ. ไฝๆณจๆ, ไธ่ฌๅฐ ้ค้ ๅ
ฑ็บฟ (#link(<signature-of-2d-subspace-of-spacetime>)[]
). ๆไปฅ่ฟ็งไนๆณ็็ปๆ, , ๅฐไธไผๅจๅ
้ฅไธ. ๆ่
ๅฆๆไฝ ๆฟๆๅฐ่ฏ, ๅฐๅ
ถๆๅฑๅฐ Clifford ไปฃๆฐ
square-root-of-Lorentz-Lie-algebra
_(tag) spacetime Lie-algebra ็ "ๅนณๆนๆ น"
where is #link(<rotation-boost-spinor-representation>)[Lorentz-Lie-algebra]
Proof
-
is ฮด rotation in where is any cyclic
-
where
Question ๆดๅฅฝ็่งฃ้? ่กจ็คบ?
property-of-parity
_(tag)
-
-
-
-
-
i.e. parity ไฟๆ Hermitian
-
-
parity-Euclidean-invariant
_(tag) parity ๅ spatial action ไบคๆข. ๅจ ไธญ่กจ็ฐไธบ ๅ ไบคๆข. let
ไธ่ฌๆ
ๅตไธไธไบคๆข, ไพๅฆ ๅฝ็ถไธไบคๆขไบ ไธญ็ๆถ้ดๆนๅ้จๅ
let
or
or
parity-reverse-boost
_(tag) parity ๅฏน Lie-algebra ็ๅฝฑๅๆฏ, ไธๆนๅ ฮด ๆ่ฝฌ, ๅฏน ฮด boost ไน
Euclidean-spinor
_(tag)
replace lightcone with just sphere acted by and
replace with , with
use trace-free Hermitian