1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

At first glance, the quotient ยฑ๐‘ฅ of Euclidean projective space seems trivial, but once generalized to complex quaternions, the seemingly non-trivial Hopf bundle, a type of fiber bundle, appears. The real case is the Uย (1,โ„)=ย Oย (1)=โ„ค2 bundle. The case of the quaternion Hopf bundle may also be related to the construction of exotic ๐•Š7.

๐•Š3,๐•Š2,๐•Š1 or complex number โ„‚ version of Hopf-bundle

Hopf-bundle_(tag)

Embedding ๐•Š2โ†ชโ„3โ†ชโ„‚2, in โ„3โ‰ƒโ„ร—โ„‚ use ๐‘ค๐‘งโˆˆโ„‚ as #link(<stereographic-projection>)[] coordinates

โ„‚2โŸถโ„‚โŸถโ„ร—โ„‚๐‘ง,๐‘คโ† ๐‘ค๐‘งโŸถ1โˆ’|๐‘ค๐‘ง|2,2๐‘ค๐‘ง1+|๐‘ค๐‘ง|2=|๐‘ง|2โˆ’|๐‘ค|2,2๐‘ค๐‘งโˆ—|๐‘ง|2+|๐‘ค|2โ† ๐‘งโˆ—๐‘คโˆ—โŸถโˆ’(1โˆ’|๐‘ง๐‘ค|2),2๐‘งโˆ—๐‘คโˆ—1+|๐‘ง๐‘ค|2

The transformation function of the two coordinates of stereographic projection ๐‘ค๐‘งโ‡๐‘งโˆ—๐‘คโˆ— or ๐œ‰โ‡1๐œ‰โˆ—

๐œ†(๐‘ง,๐‘ค),๐œ†โˆˆGL(1,โ„‚) does not change the projective result e.g. ๐œ†๐‘ง๐œ†๐‘ค=๐‘ง๐‘ค

โ„‚2โˆ–0 is a GL(1,โ„‚) bundle on ๐•Š2=โ„‚โ„™1

Construct bundle coordinates with two stereographic projection coordinates

(๐‘ง,๐‘ค)โ‡(2๐‘ค๐‘ง,๐‘ง) and (๐‘ง,๐‘ค)โ‡(2๐‘ง๐‘ค,๐‘ค)

And the transformation function (2๐‘ค๐‘ง,๐‘ง)=(2๐‘งโˆ—๐‘คโˆ—,๐‘คโˆ—) or (๐œ‰,๐œ†)โ‡(1๐œ‰โˆ—,(12๐œ‰๐œ†)โˆ—)

You can first quotient โ„‚2โ„>0โ‰ƒ๐•Š3={|๐‘ง|2+|๐‘ค|2=1}

At this point, the โ„3โ‰ƒโ„ร—โ„‚ representation of stereographic projection

(๐‘ง,๐‘ค)โ† (|๐‘ง|2โˆ’|๐‘ค|2,2๐‘ค๐‘งโˆ—)

๐œ†(๐‘ง,๐‘ค),๐œ†โˆˆย Uย (1) does not change the projective result

๐•Š3 is a #๐‘ˆ(1) bundle on ๐•Š2

Construct bundle coordinates with two stereographic projection coordinates

(๐‘ง,๐‘ค)โ‡(2๐‘ค๐‘ง,๐‘ง|๐‘ง|) and (๐‘ง,๐‘ค)โ‡(2๐‘ง๐‘ค,๐‘ค|๐‘ค|)

And the transformation function (2๐‘ค๐‘ง,๐‘ง|๐‘ง|)=(2๐‘งโˆ—๐‘คโˆ—,๐‘คโˆ—|๐‘คโˆ—|) or (๐œ‰,๐œ†)โ‡(1๐œ‰โˆ—,(๐œ‰|๐œ‰|๐œ†)โˆ—)