1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

action-point-particle-relativity_(tag) Action

โˆซ๐‘‘๐‘™(๐‘š๐‘)=โˆซ๐‘‘๐œ(๐‘š๐‘|๐‘ฅฬ‡|)

The result is a geodesic

Using the spacetime โ„1,3's metric volume form ๐‘‘ย Volย =|detย ๐‘”|12๐‘‘๐‘ฅ restricted to a one-dimensional path, we obtain the length ๐‘‘๐‘™, which uses the square root of the quadratic form, rather than the quadratic form alone

For a path, in the "time coordinate" ๐‘ฅ0(๐‘ก)=๐‘๐‘ก, let ๐‘ฃ=๐‘‘๐‘‘๐‘ก๐‘ฅ.space. Action

๐‘‘๐‘™=๐‘š๐‘2(1โˆ’(๐‘ฃ๐‘)2)12๐‘‘๐‘ก

equation-point-particle-relativity_(tag) let ๐ฟ(๐‘ฅ,๐‘ฃ)=๐‘š๐‘2(1โˆ’(๐‘ฃ๐‘)2)12. Similar to #link(<point-particle-Lagrange-equation>)[the non-relativistic case], the equation of action

โˆ‚๐ฟโˆ‚๐‘ฅโˆ’๐‘‘๐‘‘๐‘กโˆ‚๐ฟโˆ‚๐‘ฃโŸบ๐‘‘๐‘‘๐‘ก๐‘š๐‘2๐‘ฃ(1โˆ’(๐‘ฃ๐‘)2)12=0

point-particle-relativity-approximate-to-non-relativity_(tag) The relativistic action "approximates" to the non-relativistic action

๐‘š๐‘2(1โˆ’(๐‘ฃ๐‘)2)12=๐‘š๐‘2โˆ’12๐‘š๐‘ฃ2+๐‘‚(๐‘ฃ๐‘)2

Then the constant value ๐‘š๐‘2 will vary to zero 0

่ฟ™็ง้ž็›ธๅฏน่ฎบ่ฟ‘ไผผๆž้™็š„ๆ–นๅผๆ˜ฏๅๆ ‡ไพ่ต–็š„. ๅœจๅผฏๆ›ฒๆตๅฝขไธŠ, ็”ฑไบŽๅฏ่ƒฝ้œ€่ฆๅคšไธชๅๆ ‡่ฆ†็›–ๆ•ดไธชๆตๅฝข, ้ž็›ธๅฏน่ฎบ่ฟ‘ไผผๆž้™็š„็š„ๅฎšไน‰้—ฎ้ข˜ไผšๆ›ดๅ›ฐ้šพ

Symmetry and conserved quantities

The symmetry group of โ„1,3 spacetime is the isometry SO(1,3)โ‹Šโ„1,3 alias Poincare group

  • Translation

Using time coordinates. Similar to the non-relativistic case, the relativistic versions of #link(<energy-point-particle-non-relativity>)[energy] and #link(<momentum-point-particle-non-relativity>)[momentum] are energy-momentum-point-particle-relativity_(tag)

๐ธ=โˆ‚๐‘“โˆ‚๐‘ฃโ‹…๐‘ฃโˆ’๐‘“๐‘=โˆ‚๐‘“โˆ‚๐‘ฃ๐ธ=๐‘š๐‘2(1โˆ’(๐‘ฃ๐‘)2)12๐‘=๐‘š๐‘ฃ(1โˆ’(๐‘ฃ๐‘)2)12

Denoted as 4-momentum

๐‘š๐‘๐‘ฅฬ‡=๐‘š(๐‘,๐‘ฃ)(1โˆ’(๐‘ฃ๐‘)2)12=(๐ธ๐‘๐‘)

The relativistic Lagrangian |๐‘ฅฬ‡| is invariant under SO(1,3), but the boost still changes the time and space endpoints of the path i.e. changes the action โˆซ๐‘‘๐œ(๐‘š๐‘|๐‘ฅฬ‡|)

  • Rotation

Similar to the non-relativistic case, the relativistic version of #link(<rotation-momentum-point-particle-non-relativity>)[momentum-point-particle-non-relativity] is rotation-momentum-point-particle-relativity_(tag)

๐‘ฅร—๐‘=๐‘ฅร—๐‘š๐‘ฃ(1โˆ’(๐‘ฃ๐‘)2)12
  • boost

boost by #link(<hyperbolic-angle>)[hyperbolic angle]

exphย ๐œƒย iย ย splitย =(coshย ๐œƒsinhย ๐œƒsinhย ๐œƒcoshย ๐œƒ)

So ฮด boost by hyperbolic angle, is

๐œƒย iย ย splitย =(๐œƒ๐œƒ)

In a coordinate of โ„1,3, let the spatial vector ๐‘›โˆˆโ„3, |๐‘›|=๐œƒ, corresponding to ฮด boost, define the hyperbolic cross product ๐‘›ร—(๐‘๐‘ก๐‘ฅ)=(๐‘๐‘ก+๐‘›โ‹…๐‘ฅ๐‘ฅ+๐‘๐‘ก๐‘›)

Similar to the case of energy, boost also changes the action

The calculation result of boost momentum will have 4-momentum, thus energy ๐ธ will appear

boost-momentum-point-particle-relativity_(tag)

(๐ธ๐‘๐‘)โ‹…(๐‘›ร—(๐‘๐‘ก๐‘ฅ))=๐‘›โ‹…(๐ธ๐‘กโˆ’๐‘โ‹…๐‘ฅ๐‘๐‘ก๐‘โˆ’1๐‘๐ธ๐‘ฅ)ย spatial-partย =๐‘›โ‹…(๐‘๐‘ก๐‘โˆ’1๐‘๐ธ๐‘ฅ)

Note that the (1,3) spacetime metric has a negative definite spatial metric

Spatial โ„3 vector

๐‘๐‘ก๐‘โˆ’1๐‘๐ธ๐‘ฅ=๐‘š๐‘(๐‘ก๐‘ฃโˆ’๐‘ฅ)(1โˆ’(๐‘ฃ๐‘)2)12

Also called boost momentum

Because โ„1,3 coordinates are used to separate time and space, although rotational momentum and boost momentum are SO(1,3) invariant, the representations ๐‘ฅร—๐‘ and boost momentum ๐ธ๐‘ฅโˆ’๐‘ก๐‘ are not invariant

Combined, it can be written as angular momentum ๐ฟ๐œ‡๐œˆ=[๐‘ฅ๐œ‡,๐‘๐œˆ]

Particle system

potential ๐‘ˆ(|๐‘ฅ|),โˆ‘๐‘–<๐‘–โ€ฒ๐‘ˆ(๐‘ฅ๐‘–โˆ’๐‘ฅ๐‘–โ€ฒ),โˆ‘๐‘–<๐‘–โ€ฒ๐‘ˆ(|๐‘ฅ๐‘–โˆ’๐‘ฅ๐‘–โ€ฒ|)

potential ๐ด(๐‘ฅ)(๐‘ฅฬ‡)=๐ด0(๐‘ฅ)๐‘ฅฬ‡0+โ‹ฏ+๐ด3(๐‘ฅ)๐‘ฅฬ‡3

point particle in Lorentz-manifold

For the action โˆซ๐‘‘๐‘™ and conserved quantities, metric-connection and ฮด-isometry are needed

Example

โ„1,3 ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญๅ’Œ่ง„่Œƒๅœบ็š„่€ฆๅˆ. ไฝœ็”จ้‡

โˆซ๐‘‘๐œ(๐‘š๐‘|๐‘ฅฬ‡|+๐‘’๐‘โ‹…๐ด(๐‘ฅ)โ‹…๐‘ฅฬ‡)=โˆซ๐‘‘๐‘ก(๐‘š๐‘2(1โˆ’(๐‘ฃ๐‘)2)12+๐‘’(ฯ•โˆ’ย Aย โ‹…๐‘ฃ))
  • Question

้š่—็š„ Uย (1) ่ง„่Œƒๅฏน็งฐๆ€ง

ๅœบ็›ธไบ’ไฝœ็”จไธญไฝฟ็”จ็š„่ง„่Œƒๅ˜ๆข ๐‘’๐œƒ ไผšๅฏผ่‡ด่”็ปœ็š„ๅ˜ๆข ๐ด=๐ดโ€ฒ+๐‘‘๐œƒ. ๅฏนไบŽ็‚น็ฒ’ๅญๅ’Œ็”ต็ฃๅœบ็š„ไฝœ็”จ้‡, ๐‘‘๐œƒ ๆ˜ฏๆ•ฃๅบฆ้‡ ๐‘‘๐œƒ(๐‘ฅ)โ‹…๐‘ฅฬ‡=๐‘‘๐‘‘๐œ๐œƒ(๐‘ฅ(๐œ)), ็”จ่พน็•Œๆ˜ฏ้›ถ, ๅพ—ๅˆฐๅ˜ๅˆ†ๆ˜ฏ้›ถ

ๅฐฝ็ฎก invariant ็š„ๆ˜ฏๆ–น็จ‹่€Œไธๆ˜ฏไฝœ็”จ้‡

่ฟ™ไธๅŒไบŽไพ‹ๅฆ‚็บฏ้‡ๅœบ็š„ๆƒ…ๅ†ตๆ˜ฏ, ไฝœ็”จ้‡ไนŸ invariant, ่€Œๆ–น็จ‹็š„ invariant ้€š่ฟ‡ๅๅ˜ๅฏผๆ•ฐ็š„ๅฎšไน‰

current-gauge-particle_(tag) ่ฟ™็ง้š่—็š„ Uย (1) ่ง„่Œƒๅฏน็งฐๆ€งๆ˜ฏๅฆ่ƒฝ็ป™ๅ‡บ็‚น็ฒ’ๅญ็š„ๅฎˆๆ’ 4-็”ตๆต? (๐œŒ,j)=๐‘—=๐œŒ(1,v)=๐œŒ๐‘ฃ

Example

โ„1,3 ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญๅ’Œ่ง„่Œƒๅœบ็š„่€ฆๅˆ. ไฝœ็”จ้‡

โˆซ๐‘‘๐œ(๐‘š๐‘|๐‘ฅฬ‡|+๐‘’๐‘โ‹…๐ด(๐‘ฅ)โ‹…๐‘ฅฬ‡)=โˆซ๐‘‘๐‘ก(๐‘š๐‘2(1โˆ’(๐‘ฃ๐‘)2)12+๐‘’(ฯ•โˆ’ย Aย โ‹…๐‘ฃ))
  • Question

้š่—็š„ Uย (1) ่ง„่Œƒๅฏน็งฐๆ€ง

ๅœบ็›ธไบ’ไฝœ็”จไธญไฝฟ็”จ็š„่ง„่Œƒๅ˜ๆข ๐‘’๐œƒ ไผšๅฏผ่‡ด่”็ปœ็š„ๅ˜ๆข ๐ด=๐ดโ€ฒ+๐‘‘๐œƒ. ๅฏนไบŽ็‚น็ฒ’ๅญๅ’Œ็”ต็ฃๅœบ็š„ไฝœ็”จ้‡, ๐‘‘๐œƒ ๆ˜ฏๆ•ฃๅบฆ้‡ ๐‘‘๐œƒ(๐‘ฅ)โ‹…๐‘ฅฬ‡=๐‘‘๐‘‘๐œ๐œƒ(๐‘ฅ(๐œ)), ็”จ่พน็•Œๆ˜ฏ้›ถ, ๅพ—ๅˆฐๅ˜ๅˆ†ๆ˜ฏ้›ถ

ๅฐฝ็ฎก invariant ็š„ๆ˜ฏๆ–น็จ‹่€Œไธๆ˜ฏไฝœ็”จ้‡

่ฟ™ไธๅŒไบŽไพ‹ๅฆ‚็บฏ้‡ๅœบ็š„ๆƒ…ๅ†ตๆ˜ฏ, ไฝœ็”จ้‡ไนŸ invariant, ่€Œๆ–น็จ‹็š„ invariant ้€š่ฟ‡ๅๅ˜ๅฏผๆ•ฐ็š„ๅฎšไน‰

current-gauge-particle_(tag) ่ฟ™็ง้š่—็š„ Uย (1) ่ง„่Œƒๅฏน็งฐๆ€งๆ˜ฏๅฆ่ƒฝ็ป™ๅ‡บ็‚น็ฒ’ๅญ็š„ๅฎˆๆ’ 4-็”ตๆต? (๐œŒ,j)=๐‘—=๐œŒ(1,v)=๐œŒ๐‘ฃ