action-point-particle-relativity
_(tag) Action
The result is a geodesic
Using the spacetime 's metric volume form restricted to a one-dimensional path, we obtain the length , which uses the square root of the quadratic form, rather than the quadratic form alone
For a path, in the "time coordinate" , let . Action
equation-point-particle-relativity
_(tag) let . Similar to #link(<point-particle-Lagrange-equation>)[the non-relativistic case]
, the equation of action
point-particle-relativity-approximate-to-non-relativity
_(tag) The relativistic action "approximates" to the non-relativistic action
Then the constant value will vary to zero
่ฟ็ง้็ธๅฏน่ฎบ่ฟไผผๆ้็ๆนๅผๆฏๅๆ ไพ่ต็. ๅจๅผฏๆฒๆตๅฝขไธ, ็ฑไบๅฏ่ฝ้่ฆๅคไธชๅๆ ่ฆ็ๆดไธชๆตๅฝข, ้็ธๅฏน่ฎบ่ฟไผผๆ้็็ๅฎไน้ฎ้ขไผๆดๅฐ้พ
Symmetry and conserved quantities
The symmetry group of spacetime is the isometry alias Poincare group
- Translation
Using time coordinates. Similar to the non-relativistic case, the relativistic versions of #link(<energy-point-particle-non-relativity>)[energy]
and #link(<momentum-point-particle-non-relativity>)[momentum]
are energy-momentum-point-particle-relativity
_(tag)
Denoted as 4-momentum
The relativistic Lagrangian is invariant under , but the boost still changes the time and space endpoints of the path i.e. changes the action
- Rotation
Similar to the non-relativistic case, the relativistic version of #link(<rotation-momentum-point-particle-non-relativity>)[momentum-point-particle-non-relativity]
is rotation-momentum-point-particle-relativity
_(tag)
- boost
boost by #link(<hyperbolic-angle>)[hyperbolic angle]
So ฮด boost by hyperbolic angle, is
In a coordinate of , let the spatial vector , , corresponding to ฮด boost, define the hyperbolic cross product
Similar to the case of energy, boost also changes the action
The calculation result of boost momentum will have 4-momentum, thus energy will appear
boost-momentum-point-particle-relativity
_(tag)
Note that the spacetime metric has a negative definite spatial metric
Spatial vector
Also called boost momentum
Because coordinates are used to separate time and space, although rotational momentum and boost momentum are invariant, the representations and boost momentum are not invariant
Combined, it can be written as angular momentum
Particle system
potential
potential
point particle in Lorentz-manifold
Example
็ธๅฏน่ฎบ็น็ฒๅญๅ่ง่ๅบ็่ฆๅ. ไฝ็จ้
- Question
้่็ ่ง่ๅฏน็งฐๆง
ๅบ็ธไบไฝ็จไธญไฝฟ็จ็่ง่ๅๆข ไผๅฏผ่ด่็ป็ๅๆข . ๅฏนไบ็น็ฒๅญๅ็ต็ฃๅบ็ไฝ็จ้, ๆฏๆฃๅบฆ้ , ็จ่พน็ๆฏ้ถ, ๅพๅฐๅๅๆฏ้ถ
ๅฐฝ็ฎก invariant ็ๆฏๆน็จ่ไธๆฏไฝ็จ้
่ฟไธๅไบไพๅฆ็บฏ้ๅบ็ๆ ๅตๆฏ, ไฝ็จ้ไน invariant, ่ๆน็จ็ invariant ้่ฟๅๅๅฏผๆฐ็ๅฎไน
current-gauge-particle
_(tag) ่ฟ็ง้่็ ่ง่ๅฏน็งฐๆงๆฏๅฆ่ฝ็ปๅบ็น็ฒๅญ็ๅฎๆ 4-็ตๆต?
Example
็ธๅฏน่ฎบ็น็ฒๅญๅ่ง่ๅบ็่ฆๅ. ไฝ็จ้
- Question
้่็ ่ง่ๅฏน็งฐๆง
ๅบ็ธไบไฝ็จไธญไฝฟ็จ็่ง่ๅๆข ไผๅฏผ่ด่็ป็ๅๆข . ๅฏนไบ็น็ฒๅญๅ็ต็ฃๅบ็ไฝ็จ้, ๆฏๆฃๅบฆ้ , ็จ่พน็ๆฏ้ถ, ๅพๅฐๅๅๆฏ้ถ
ๅฐฝ็ฎก invariant ็ๆฏๆน็จ่ไธๆฏไฝ็จ้
่ฟไธๅไบไพๅฆ็บฏ้ๅบ็ๆ ๅตๆฏ, ไฝ็จ้ไน invariant, ่ๆน็จ็ invariant ้่ฟๅๅๅฏผๆฐ็ๅฎไน
current-gauge-particle
_(tag) ่ฟ็ง้่็ ่ง่ๅฏน็งฐๆงๆฏๅฆ่ฝ็ปๅบ็น็ฒๅญ็ๅฎๆ 4-็ตๆต?