1. notice
  2. 中文
  3. 1. feature
  4. 逻辑
  5. 2. 逻辑
  6. 3. 集合论
  7. 4. 映射
  8. 5. 序
  9. 6. 组合
  10. 微积分
  11. 7. 实数
  12. 8. 数列极限
  13. 9. ℝ^n
  14. 10. Euclidean 空间
  15. 11. Minkowski 空间
  16. 12. 多项式
  17. 13. 解析 (Euclidean)
  18. 14. 解析 (Minkowski)
  19. 15. 解析 struct 的操作
  20. 16. 常微分方程
  21. 17. 体积
  22. 18. 积分
  23. 19. 散度
  24. 20. 网极限
  25. 21. 紧致
  26. 22. 连通
  27. 23. 拓扑 struct 的操作
  28. 24. 指数函数
  29. 25. 角度
  30. 几何
  31. 26. 流形
  32. 27. 度规
  33. 28. 度规的联络
  34. 29. Levi-Civita 导数
  35. 30. 度规的曲率
  36. 31. Einstein 度规
  37. 32. 常截面曲率
  38. 33. simple-symmetric-space
  39. 34. 主丛
  40. 35. 群作用
  41. 36. 球极投影
  42. 37. Hopf 丛
  43. 场论
  44. 38. 非相对论点粒子
  45. 39. 相对论点粒子
  46. 40. 纯量场
  47. 41. 纯量场的守恒流
  48. 42. 非相对论纯量场
  49. 43. 光锥射影
  50. 44. 时空动量的自旋表示
  51. 45. Lorentz 群
  52. 46. 旋量场
  53. 47. 旋量场的守恒流
  54. 48. 电磁场
  55. 49. 张量场的 Laplacian
  56. 50. Einstein 度规
  57. 51. 相互作用
  58. 52. 谐振子量子化
  59. 53. 参考
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. ℝ^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

Action of a scalar field

Kinetic energy part

12|grad ϕ|2

or

12|∂ϕ|2

where grad ϕ↔∂ϕ by metric duality (∂ϕ)(𝑋)=𝑔(grad ϕ,𝑋)

Mass part −12𝑚2|ϕ|2

Klein--Gordon-Lagrangian_(tag)

∫𝑑𝑥(12|∂ϕ|2∓12𝑚2|ϕ|2)

or

∫ℝ1,3𝑑𝑥(12(∂ϕ∗⋅∂ϕ∓𝑚2ϕ∗ϕ))

let δ diffeomorphism Δϕ, let the differential of the action be zero

0=Δ𝑆=∫ℝ1,3𝑑𝑥 Re (∂Δϕ∗⋅∂ϕ∓𝑚2Δϕ∗ϕ)

product rule ∂†(Δϕ∗∂ϕ)=∂Δϕ∗⋅∂ϕ+Δϕ∗∂†∂ϕ

In coordinates ∂†∂ϕ=𝑔𝜇𝜈∂𝜇∂𝜈ϕ

ℝ1,3 δ diffeomorphism of field Δϕ, is zero at the boundary (boundary of ℝ1,3 i.e. infinity) such that

∫ℝ1,3𝑑𝑥 Re (∂†(Δϕ∗∂ϕ))= lim 𝑟→∞∫ℚ1,3(±𝑟)(Δϕ∗∂ϕ)⋅𝑛=0

Differential of the action

0=−∫ℝ1,3𝑑𝑥 Re Δϕ∗(∂†∂ϕ±𝑚2ϕ)

for all Δϕ, thus giving the Lagrange-equation, here called Klein--Gordon-equation_(tag)

∂†∂ϕ±𝑚2ϕ=0

let ∆= div  grad =∂†∂=∂∂†

  • massless

    ∆ϕ=0
  • massive

    (∆±𝑚2)ϕ=0
  • mass term => −12𝑉(|ϕ|2)

    (∆+𝑉′)ϕ=0

The action uses the quadratic form |grad ϕ|2 and the metric volume form 𝑑 Vol

in ℂ, |grad ϕ|2=(grad ϕ)† grad ϕ

Repeat the above steps for a general scalar field action

∫ℝ1,3𝑑𝑥 𝐿(ϕ,∂𝑥ϕ)0=Δ𝑆=∫ℝ1,3𝑑𝑥(∂𝐿∂ϕ⋅Δϕ+∂𝐿∂(∂𝑥ϕ)⋅∂𝑥Δϕ)

In coordinates ∂𝐿∂(∂𝑥ϕ)⋅∂𝑥Δϕ=𝑔𝜇𝜈∂𝐿∂(∂𝜇ϕ)⋅∂𝜈Δϕ

product rule

∂𝑥†(∂𝐿∂(∂𝑥ϕ)⋅Δϕ)=(∂𝑥†∂𝐿∂(∂𝑥ϕ))⋅Δϕ+∂𝐿∂(∂𝑥ϕ)⋅∂𝑥Δϕ

In coordinates ∂𝐿∂(∂𝑥ϕ)⋅Δϕ=(∂𝐿∂(∂𝜇ϕ)⋅Δϕ)𝜇=0,…,3

Divergence + Stokes' theorem + zero boundary + forall Δϕ, collecting Δϕ, terms gives the Lagrange-equation

∂𝐿∂ϕ−∂𝑥†∂𝐿∂(∂𝑥ϕ)=0

Note that ℝ valued fields are not compatible with U (1,ℂ) gauge

Plane wave

  • Period
  • Wavelength
  • 4-Wave number
  • Wave speed

    • Massless ==> Wave speed = Speed of light
    • With mass ==> wave speed < speed of light. And wave speed is not SO(1,3) invariant

Question motivation-of-plane-wave-solution_(tag)

Motivation for plane waves? Inspired by the appearance of exp in the solutions of linear ODEs with constant coefficients, especially the harmonic oscillator eq 𝑑2𝑥𝑑𝑡2±𝜔2𝑥=0, similar to the first-order linearization of #link(<harmonic-oscillator>)[harmonic oscillator] (𝑑𝑑𝑡𝑑𝑑𝑡)(𝑥𝑣)=(1∓𝜔2)(𝑥𝑣), for the KG equation

(∂∂†)(ϕ𝜓)=(−𝟙∓𝑚2)(ϕ𝜓)

Perform #link(<exponential-of-vector-field>)[$exp$ transformation] or #link(<integral-curve>)[integral curve]

Trigonometric case

exp 𝑥(−𝟙∓𝑚2)=(cos 𝑝𝑥𝑝|𝑝|2 sin 𝑝𝑥𝟙−𝑝 sin 𝑝𝑥𝟙cos 𝑝𝑥)

where |𝑝|2=𝑚2, 𝑝|𝑝|2 represents quadratic form inversion, and acts on 𝜓 via inner product

Thus

ϕ𝑝(𝑥)=ϕ(0) cos 𝑝𝑥+𝑝⋅𝜓(0)𝑚2 sin 𝑝𝑥

Or written in the form of a complex exponential

ϕ(𝑥)=12(ϕ(0)− i 𝑝⋅𝜓(0)𝑚2)𝑒i 𝑝𝑥+12(ϕ(0)+ i 𝑝⋅𝜓(0)𝑚2)𝑒− i 𝑝𝑥≕𝑎(𝑝, i)𝑒i 𝑝𝑥+𝑎(𝑝,− i)𝑒− i 𝑝𝑥

Hyperbolic case is similar

linear-superposition-of-KG-eq_(tag)

Linear superposition of plane waves also satisfies scalar field eq

  • 𝑚≠0

Integrate superposition on the hyperboloid {𝑝2=±𝑚2}=ℚ(1,3)(±𝑚2)

metric & volume form come from the restriction of ℝ1,3

In the case of +𝑚2, it can be done on one sheet of the three-dimensional spacelike two-sheet hyperboloid ℍ𝕪3={𝑝2=𝑚2,𝑝0>0}, because the other sheet can be obtained by collecting coefficients 𝑎(𝑝,i)+𝑎(−𝑝,−i), which is equivalent to a single sheet

ϕ(𝑥)=∫ℍ𝕪3𝕊(Im ℂ)𝑑𝑝𝑑 i (𝑎(𝑝,i)𝑒𝑝𝑥 i)

{± i}=𝕊(Im ℂ)=𝕊0. For ℍ,𝕆, plane waves probably need to consider all unit imaginary numbers, so do we need to integrate over 𝕊(Im ℍ)=𝕊2,𝕊(Im 𝕆)=𝕊6?

For ℝ value fields, 𝑎(𝑝,−i)=𝑎(𝑝,i)∗, and written as 𝑎(𝑝)∗

Add square-integrable condition to 𝑎(𝑝,i) (integral on 𝑝2=𝑚2), and in order to make some derivatives of ϕ also square-integrable (Sobolev) e.g. ∂𝜇ϕ, usually some "polynomial multiplication" square-integrable conditions are added to 𝑎(𝑝,i) e.g. 𝑝𝜇 i 𝑎(𝑝,i)

On simple "projection to ℝ3 coordinates" (not SO(1,3) invariant), using notation (𝑝0,𝑝)∈ℝ1,3

ϕ(𝑥0,𝑥)=∫ℝ3𝑑𝑝12𝑝0(𝑎(𝑝,i)𝑒𝑝0𝑥0 i𝑒−𝑝𝑥 i+𝑎(𝑝,−i)𝑒−𝑝0𝑥0 i𝑒𝑝𝑥 i)

with 𝑝0=𝑝0(𝑝)=𝑚2+𝑝2>0,𝑎(𝑝,i)=𝑎(𝑝0,𝑝,i)

𝑝2=−𝑚2 cannot be simply "projected" to ℝ1,2, it's not a bijection in the first place

  • 𝑚=0
Cannot directly use submanifold metric volume form because the metric is zero. Can we use the limit 𝑚→0? Use some limit of 𝑝0(𝑚),𝑝(𝑚),𝑎(𝑚)?

unitary-representation-KG-field_(tag)

For 𝐿2 superposition of free fields, there is an 𝐿2 inner product, and it is SO(1,3)⋊ℝ1,3 invariant. Preserving quadratic form implies preserving inner product

Translation 𝑥→𝑥+𝑎 makes |𝑎(𝑝)exp(𝑝𝑎 i)|2=|𝑎(𝑝)|2

Rotation (𝑝→Λ𝑝)∈SO(1,3) is an isometry of ℚ1,3(±𝑚2), which does not change the integral

∫ℚ1,3(±𝑚2)𝑑 Vol |𝑎(Λ𝑝)|2=∫ℚ1,3(±𝑚2)𝑑 Vol |𝑎(𝑝)|2

This is called the unitary representation of the Poincare group SO(1,3)⋊ℝ1,3, spin 0 part, ±𝑚2∈ℝ

try-to-define-plane-wave-in-metric-manifold_(tag)

Can the exp of (∂∂†)(ϕ𝜓)=(−𝟙∓𝑚2)(ϕ𝜓) be generalized on a manifold? Note that this is a coordinate-free notation. If coordinates are used, it's not a constant coefficient PDE. Whether it's constant coefficient or not, one can try to exponentiate it.

Can it be generalized to symmetric spaces ℚ1,4(−1),ℚ2,3(1)?

Does (δ) isometry preserve 𝐿2 superposition?

To construct particle-like wave packets, first find static solutions, then boost

Does ℝ1,1 spacetime, ℝ valued scalar field with potential 𝑉(ϕ)=ϕ4 or sin ϕ provide possible multiparticle wave packet models? (Soliton type)

Question Infinite difficulties

Free field |𝑝,± i ⟩=exp(±𝑝𝑥 i) is not integrable, so it cannot be substituted into the Lagrangian and then integrated

One possibly less satisfying approach is to only consider the integrability of the difference. Consider ϕ around |𝑝⟩ with 𝐿(ϕ,∂ϕ)−𝐿(|𝑝,± i ⟩,∂|𝑝,± i ⟩) being integrable, and the derivative of the action at |𝑝⟩ is zero

Another method is to first integrate in a finite region, and then take the limit to an infinite region