1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

cf. #link(<curvature-of-metric.typ>)[]

Einstein-Lagrangian_(tag) := (scalย โˆ’2ฮ›)๐‘‘ย Vol. In coordinates ๐‘‘ย Volย =|๐‘”|๐‘‘๐‘ฅ

Question Is there a good explanation for using scalar curvature in the action?

The action contains second derivatives of ๐‘”, so it cannot be treated with general first-order differential action theory.

Scalar curvature is not homology-scalar-curvature; the integral of the latter (proportional to ๐œ’(๐‘€)?) is homology invariant, so it always varies to zero, and has trivial eq.

Prop Variation with respect to ๐‘”: ฮ”ย scalย โˆผโˆ’ย Ricย +ย divergenceย term,ฮ”|๐‘”|โˆผ12|๐‘”|๐‘”

So the product rule gives

Prop In Einstein-Lagrangian, ฮ”(scalย |๐‘”|)โˆผ|๐‘”|(Ricย โˆ’12ย scalย ๐‘”)+ย divergenceย term

Proof

Prop The derivative of det is โˆ‚det(๐ด)=ย detย ๐ดtr(๐ดโˆ’1โˆ‚๐ด)=ย detย ๐ดtr(โˆ‚ย logย ๐ด)

Proof

det(๐‘‹)=det(๐ด)det(๐ดโˆ’1๐‘‹) and โˆ‚det(๐Ÿ™)=ย tr. So

โˆ‚det(๐ดโˆ’1๐‘‹)(๐ด:ย base,ฮ”๐‘‹:ย vector)=โˆ‚ย detย (๐Ÿ™:ย base,โˆ‚(๐ดโˆ’1๐‘‹)(๐ด:ย base,ฮ”๐‘‹:ย vector):ย vector)=tr(๐ดโˆ’1ฮ”๐‘‹)

So the variation of the volume form is

ฮ”|๐‘”|=ฮ”|detย ๐‘”|12=12|detย ๐‘”|12tr(๐‘”โˆ’1ฮ”๐‘”)

Treating Ric as a matrix, the adjoint (๐‘”โ‹…)โ€  can be written as

scalย =(๐‘”โ‹…)โ€ ย Ricย =tr(๐‘”โˆ’1ย Ric)

Prop The differential of ๐ดโ‡๐ดโˆ’1 is โˆ’๐ดโˆ’1(โˆ‚๐ด)๐ดโˆ’1. Proof Using 0=โˆ‚๐Ÿ™=โˆ‚(๐ด๐ดโˆ’1)=โˆ‚๐ดโ‹…๐ดโˆ’1+๐ดโ‹…โˆ‚(๐ดโˆ’1)

So the variation of scalar-curvature is

ฮ”scalย =tr(โˆ’๐‘”โˆ’1(ฮ”๐‘”)๐‘”โˆ’1ย Ric)+tr(๐‘”โˆ’1ฮ”ย Ric)

Perform tedious calculations on the following

  • ฮ”ย Ricย =ฮ”((๐‘”โง€)โ€ ๐‘…)
  • ฮ”๐‘…
  • ฮ”ฮ“

This might be useful for calculations โˆ‡(๐‘”โง€)โ€ =(๐‘”โง€)โ€ โˆ‡ and โˆ‡(๐‘”โ‹…)โ€ =(๐‘”โ‹…)โ€ โˆ‡

trย (๐‘”โˆ’1ฮ”ย Ric)=โˆ‡โ€ โˆ‡ย trย (๐‘”โˆ’1ฮ”๐‘”)+โˆ‡โŠ™โ€ โˆ‡โŠ™โ€ ฮ”๐‘”

is a divergence (cf. #link(<Laplacian-of-tensor-field.typ>)[] for โˆ‡โ€ ,โˆ‡โŠ™,โˆ‡โŠ™โ€ )

  • tr(๐‘”โˆ’1ฮ”๐‘”)=๐‘”(ฮ”๐‘”,๐‘”)
  • tr(โˆ’๐‘”โˆ’1(ฮ”๐‘”)๐‘”โˆ’1ย Ric)=๐‘”(ฮ”๐‘”,โˆ’ย Ric)

==>

  • ฮ”|๐‘”|=12|๐‘”|๐‘”(ฮ”๐‘”,๐‘”)
  • ฮ”ย scalย =๐‘”(ฮ”๐‘”,โˆ’ย Ric)+ย divergenceย term

Let the variation of the action be zero

0=โˆ’โˆซ๐‘‘๐‘ฅ|๐‘”|๐‘”(ฮ”๐‘”,ย Ricย โˆ’(12โ‹…ย scalย โˆ’ฮ›)โ‹…๐‘”)

forall ฮ”๐‘”, therefore

Einstein-equation_(tag) Einstein-metric_(tag)

Ricย โˆ’(12โ‹…ย scalย โˆ’ฮ›)โ‹…๐‘”=0

is equivalent to (by taking (๐‘”โ‹…)โ€ )

Ricย =2ฮ›๐‘›โˆ’2โ‹…๐‘”=1๐‘›โ‹…ย scalย โ‹…๐‘”

with ฮ›=(12โˆ’1๐‘›)ย scal

i.e. Ric is constant proportionally to ๐‘” and scalar-curvature is constant

equivalently

tr-free-Ricย =0ย scalย =2ฮ›๐‘›โˆ’2

i.e. trace-free Ricci-curvature is zero, and scalar-curvature is constant

Einstein-equation is a second-order nonlinear PDE for ๐‘”

when ๐‘›=4, Ricย =ฮ›โ‹…๐‘” with ฮ›=14ย scal

When there is interaction, although ๐‘‡=ย Ricย โˆ’(12โ‹…ย scalย โˆ’ฮ›)โ‹…๐‘”โ‰ 0, the divergence is still zero โˆ‡โŠ™โ€ ๐‘‡=0

Proof

๐‘” does not need to be Einstein-metric

ฮด diffeomorphism ๐‘‹ generates a first-order infinitesimal of the metric ฮ”๐‘”=โˆ‡โŠ™๐‘‹

Because Einstein action is diffeomorphism invariant, the result of the ฮด diffeomorphism ๐‘‹ variation is zero

0=โˆซ๐‘”(ฮ”๐‘”,๐‘‡)๐‘‘Vol(๐‘”)=โˆซ๐‘”(โˆ‡โŠ™๐‘‹,๐‘‡)๐‘‘Vol(๐‘”)=โˆซ๐‘”(๐‘‹,โˆ‡โŠ™โ€ ๐‘‡)๐‘‘Vol(๐‘”)

forall ๐‘‹, therefore โˆ‡โŠ™โ€ ๐‘‡=0

โˆ‡โŠ™โ€ (Ricย โˆ’(12โ‹…ย scalย โˆ’ฮ›)โ‹…๐‘”)=0

This will give

โˆ‡โŠ™โ€ ย Ricย =โˆ‡โŠ™ย scal

Prop For Einstein action, the energy-momentum tensor of ฮด-isometry will be zero

moduli-space-of-Einstein-metric := the orbit space of the metric space acted upon by diffeomorphisms, restricted to the Einstein-metric space. isotropy-group is isometry

Question Even if we know all Einstein-metrics for every manifold, we still don't know which manifold to choose

Question The classification of manifolds with constant-sectional-curvature or simple-symmetric-space seems satisfactory

When dimension โ‰ฅ4 there exist manifolds that do not allow constant-sectional-curvature metric but allow Einstein-metric

Schwarzschild-metric_(tag) in โ„1,3 := asymptotically flat static spherically symmetric, as the simplest generalization of non-relativity gravity in โ„3. Use spherical coordinates in space โ„3

๐‘”=(1โˆ’2๐‘š๐‘Ÿ)๐‘‘๐‘ก2โˆ’((1โˆ’2๐‘š๐‘Ÿ)โˆ’1๐‘‘๐‘Ÿ2+๐‘Ÿ2๐‘”๐•Š2)

with scalย =0 and Ricย =0. Therefore only conformal curvature

Generalize to โ„1,๐‘›โˆ’1?

๐‘”=(1โˆ’2๐‘š๐‘Ÿ๐‘›โˆ’3)๐‘‘๐‘ก2โˆ’((1โˆ’2๐‘š๐‘Ÿ๐‘›โˆ’3)โˆ’1๐‘‘๐‘Ÿ2+๐‘Ÿ2๐‘”๐•Š๐‘›โˆ’2)

Schwarzschild-metric-derivation_(tag) (ref-9, ch.4)

Assume metric is spherically symmetric

๐‘”=๐‘“๐‘ก(๐‘Ÿ)2๐‘‘๐‘ก2โˆ’(๐‘“๐‘Ÿ(๐‘Ÿ)2๐‘‘๐‘Ÿ2+๐‘“๐•Š2(๐‘Ÿ)2๐‘”๐•Š2)

Point particle gravity source i.e. outside the point particle Einstein equations with ฮ›=0 give ๐‘“๐‘Ÿ=(๐‘Ž๐‘“๐‘ก)โˆ’1,๐‘“๐•Š2=๐‘Ÿ

Asymptotically flat i.e. approaches โ„1,3 metric ๐‘‘๐‘ก2โˆ’(๐‘‘๐‘Ÿ2+๐‘Ÿ2๐‘”๐•Š2) when ๐‘Ÿโ†’โˆž, gives ๐‘Ž=1, then Einstein equation gives ๐‘“๐‘ก(๐‘Ÿ)2=1โˆ’2๐‘š๐‘Ÿ

Schwarzschild-metric-approximate-to-Newton-gravity_(tag)

To approximate non-relativity, restore some constants ๐บ,๐‘,๐‘ฅ0=๐‘๐‘ก. At this point Schwarzschild-metric

๐‘”=(1โˆ’2๐บ๐‘€๐‘2๐‘Ÿ)๐‘2๐‘‘๐‘ก2โˆ’((1โˆ’2๐บ๐‘€๐‘2๐‘Ÿ)โˆ’1๐‘‘๐‘Ÿ2+๐‘Ÿ2๐‘”๐•Š2)

In time coordinates, for this metric, approximate from relativistic point particle action to non-relativistic

๐‘š๐‘|๐‘ฅฬ‡|=๐‘š๐‘2(1โˆ’2๐บ๐‘€๐‘2๐‘Ÿโˆ’1๐‘2((1โˆ’2๐บ๐‘€๐‘2๐‘Ÿ)โˆ’1๐‘ฃ๐‘Ÿ2+๐‘Ÿ2๐‘ฃ๐•Š22))12=๐‘š๐‘2(1โˆ’12(2๐บ๐‘€๐‘2๐‘Ÿ+1๐‘2(๐‘ฃ๐‘Ÿ2+๐‘Ÿ2๐‘ฃ๐•Š22))+๐‘œ(1๐‘2))=๐‘š๐‘2โˆ’(12๐‘š๐‘ฃ2โˆ’(โˆ’๐บ๐‘€๐‘š๐‘Ÿ))+๐‘œ(1)
  • ๐‘š๐‘2 is rest energy, which will vary to 0
  • 12๐‘š๐‘ฃ2 is the kinetic energy of a non-relativistic point particle
  • โˆ’๐บ๐‘€๐‘š๐‘Ÿ is the non-relativistic gravitational potential energy
  • ๐‘œ(1) disappears in the limit lim๐‘โ†’โˆž

Question If the gravitational source is ๐‘‡=ย constant or ๐‘‡00=ย constant, what is the metric?

Some Einstein-metric examples

  • #link(<constant-sectional-curvature-imply-Einstein-metric>)[constant sectional curvature]
  • #link(<simple-symmetric-space>)[]

Einstein ==> harmonics. Einstein-equation satisfy eq defined by Lagrangian |๐‘…|2๐‘‘ย Vol