1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๆ—‹้‡ๅœบๆ‚้กน
  60. 54. ๅ‚่€ƒ
  61. English
  62. 55. notice
  63. 56. feature
  64. logic-topic
  65. 57. logic
  66. 58. set-theory
  67. 59. map
  68. 60. order
  69. 61. combinatorics
  70. calculus
  71. 62. real-numbers
  72. 63. limit-sequence
  73. 64. โ„^n
  74. 65. Euclidean-space
  75. 66. Minkowski-space
  76. 67. polynomial
  77. 68. analytic-Euclidean
  78. 69. analytic-Minkowski
  79. 70. analytic-struct-operation
  80. 71. ordinary-differential-equation
  81. 72. volume
  82. 73. integral
  83. 74. divergence
  84. 75. limit-net
  85. 76. compact
  86. 77. connected
  87. 78. topology-struct-operation
  88. 79. exponential
  89. 80. angle
  90. geometry
  91. 81. manifold
  92. 82. metric
  93. 83. metric-connection
  94. 84. geodesic-derivative
  95. 85. curvature-of-metric
  96. 86. Einstein-metric
  97. 87. constant-sectional-curvature
  98. 88. simple-symmetric-space
  99. 89. principal-bundle
  100. 90. group-action
  101. 91. stereographic-projection
  102. 92. Hopf-bundle
  103. field-theory
  104. 93. point-particle-non-relativity
  105. 94. point-particle-relativity
  106. 95. scalar-field
  107. 96. scalar-field-current
  108. 97. scalar-field-non-relativity
  109. 98. projective-lightcone
  110. 99. spacetime-momentum-spinor-representation
  111. 100. Lorentz-group
  112. 101. spinor-field
  113. 102. spinor-field-current
  114. 103. electromagnetic-field
  115. 104. Laplacian-of-tensor-field
  116. 105. Einstein-metric
  117. 106. interaction
  118. 107. harmonic-oscillator-quantization
  119. 108. spinor-field-misc
  120. 109. reference

note-math

cf. curvature-of-metric.typ

In finite dimensions, a space of symmetric bilinear forms with a non-degenerate signature is a submanifold of a space of symmetric bilinear forms, and its tangent space can be embedded into , with as the notation for the tangent vector at

In manifold , a space of symmetric bilinear forms with a non-degenerate signature metric is a submanifold of a space of field of symmetric bilinear forms, and its tangent space can be embedded into , with as the notation for the tangent vector at

[Einstein-Lagrangian] := . In coordinates

Question Is there a good explanation for using scalar curvature in the action?

The action contains second derivatives of , so it cannot be treated with general first-order differential action theory.

Scalar curvature is not homology-scalar-curvature; the integral of the latter (proportional to ?) is homology invariant, so it always varies to zero, and has trivial eq.

Prop Variation with respect to :

So the product rule gives

Prop In Einstein-Lagrangian,

Proof

Prop The derivative of is

Proof

and . So

So the variation of the volume form is

Treating as a matrix, the adjoint can be written as

Prop The differential of is . Proof Using

So the variation of scalar-curvature is

Perform tedious calculations on the following

This might be useful for calculations and

is a divergence (cf. Laplacian-of-tensor-field.typ for )

==>

Let the variation of the action be zero

forall , therefore

[Einstein-equation] [Einstein-metric]

is equivalent to (by taking )

with

i.e. is constant proportionally to and scalar-curvature is constant

equivalently

i.e. trace-free Ricci-curvature is zero, and scalar-curvature is constant

Einstein-equation is a second-order nonlinear PDE for

when , with

When there is interaction, although , the divergence is still zero

Proof

does not need to be Einstein-metric

ฮด diffeomorphism generates a first-order infinitesimal of the metric

Because Einstein action is diffeomorphism invariant, the result of the ฮด diffeomorphism variation is zero

forall , therefore

This will give

Prop For Einstein action, the energy-momentum tensor of ฮด-isometry will be zero

moduli-space-of-Einstein-metric := the orbit space of the metric space acted upon by diffeomorphisms, restricted to the Einstein-metric space. isotropy-group is isometry

Question Even if we know all Einstein-metrics for every manifold, we still don't know which manifold to choose

Question The classification of manifolds with constant-sectional-curvature or simple-symmetric-space seems satisfactory

When dimension there exist manifolds that do not allow constant-sectional-curvature metric but allow Einstein-metric

[Schwarzschild-metric] in := asymptotically flat static spherically symmetric, as the simplest generalization of non-relativity gravity in . Use spherical coordinates in space

with and . Therefore only conformal curvature

Generalize to ?

[Schwarzschild-metric-derivation] (ref-9, ch.4)

Assume metric is spherically symmetric

Point particle gravity source i.e. outside the point particle Einstein equations with give

Asymptotically flat i.e. approaches metric when , gives , then Einstein equation gives

[Schwarzschild-metric-approximate-to-Newton-gravity]

To approximate non-relativity, restore some constants . At this point Schwarzschild-metric

In time coordinates, for this metric, approximate from relativistic point particle action to non-relativistic

  • is rest energy, which will vary to
  • is the kinetic energy of a non-relativistic point particle
  • is the non-relativistic gravitational potential energy
  • disappears in the limit

Question If the gravitational source is or , what is the metric?

Some Einstein-metric examples

  • constant sectional curvature
  • simple-symmetric-space

Einstein ==> harmonics. Einstein-equation satisfy eq defined by Lagrangian