1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

composition (ๅ‡ฝๆ•ฐๅคๅˆ)

let

๐ดโŸถ๐‘“๐ตโŸถ๐‘”๐ถ

define

๐ดโŸถ๐‘”โˆ˜๐‘“๐ถ๐‘ŽโŸฟ๐‘”(๐‘“(๐‘Ž))

ๅฎšไน‰ proposition, ๅ‚ๆ•ฐ ๐‘“:๐ดโ†’๐ต

  • ๅ•ๅฐ„ := โˆ€๐‘Ž,๐‘Žโ€ฒโˆˆ๐ด,๐‘“(๐‘Ž)=๐‘“(๐‘Žโ€ฒ)โŸน๐‘Ž=๐‘Žโ€ฒ. ่ฎฐๅท ๐‘“:๐ดโ†ช๐ต
  • ๆปกๅฐ„ := โˆ€๐‘โˆˆ๐ต,โˆƒ๐‘Žโˆˆ๐ด,๐‘“(๐‘Ž)=๐‘. ่ฎฐๅท ๐‘“:๐ดโ† ๐ต
  • ๅŒๅฐ„ := ๅ•ๅฐ„ and ๆปกๅฐ„. ่ฎฐๅท ๐‘“:๐ดโ†”๐ต. ๆญคๆ—ถๆœ‰้€†ๆ˜ ๅฐ„ ๐‘“โˆ’1:๐ตโ†”๐ด

cardinal_(tag)

  • |๐ด|=|๐ต|โ‰”bijective(๐ดโ†’๐ต)โ‰ โˆ…. or ๅญ˜ๅœจๅŒๅฐ„ ๐‘“:๐ดโ†”๐ต
  • |๐ด|โ‰ค|๐ต|โ‰”injective(๐ดโ†’๐ต)โ‰ โˆ…. or ๅญ˜ๅœจๅ•ๅฐ„ ๐‘“:๐ดโ†ช๐ต
  • |๐ด|โ‰ฅ|๐ต|โ‰”surjective(๐ดโ†’๐ต)โ‰ โˆ…. or ๅญ˜ๅœจๆปกๅฐ„ ๐‘“:๐ดโ† ๐ต
  • ๅ•ๅฐ„ๅ’Œๆปกๅฐ„็š„ๅฏน็งฐ

    surjective(๐ดโ†’๐ต)โ‰ โˆ…โŸบinjective(๐ตโ†’๐ด)โ‰ โˆ…

    or ๅญ˜ๅœจๆปกๅฐ„ ๐‘“:๐ดโ† ๐ต <==> ๅญ˜ๅœจๅ•ๅฐ„ ๐‘”:๐ตโ†ช๐ด

cardinal-always-comparable_(tag) ๅ…ƒ็ด ๆ•ฐ้‡ๅบ < ็š„ไธ‰ๅˆ† or ๅบๆ€ปๆ˜ฏ #link(<order-comparable>)[ๅฏๆฏ”่พƒ]

โˆ€๐ด,๐ตโˆˆย Set,(|๐ด|=|๐ต|)โŠ•(|๐ด|<|๐ต|)โŠ•(|๐ต|<|๐ด|)

finite_(tag) := โˆƒ๐‘›โˆˆโ„•,|๐ด|=|{0,1,โ€ฆ,๐‘›โˆ’1}|. also let |{0,1,โ€ฆ,๐‘›โˆ’1}|=๐‘›

finite <==> |๐ด|<โ„•

๐ด ๆ˜ฏๆœ‰้™้›† ==> (๐‘“:๐ดโ†’๐ด ๆ˜ฏๅ•ๅฐ„ or ๆปกๅฐ„ <==> ๐‘“ ๆ˜ฏๅŒๅฐ„)

Example โ„• ๆ˜ฏๆ— ้™้›†, โ„•โŸถโ„•๐‘›โŸฟ2๐‘› ๆ˜ฏๅ•ๅฐ„ and ไธๆ˜ฏๆปกๅฐ„, so ไธๆ˜ฏๅŒๅฐ„

  • ๅฏๆ•ฐๆ— ้™ := |๐ด|=|โ„•|
  • uncountable_(tag) ไธๅฏๆ•ฐ := |๐ด|>|โ„•|
  • countable_(tag) ๅฏๆ•ฐ := |๐ด|โ‰ค|โ„•| i.e. ๆœ‰้™ or ๅฏๆ•ฐๆ— ้™

ไฟๆŒๅฏๆ•ฐ็š„ๆ“ไฝœ. let โˆ€๐‘–โˆˆโ„•, ๐ด๐‘– ๅฏๆ•ฐ. ไปฅไธ‹้›†ๅˆๅฏๆ•ฐ

  • union: ๐ด1โˆชโ‹ฏโˆช๐ด๐‘›, โ‹ƒ๐‘–โˆˆโ„•๐ด๐‘–
  • product: ๐ด1ร—โ‹ฏร—๐ด๐‘›, โˆ๐‘–โˆˆโ„•๐ด๐‘–

range_(tag) Range(๐‘“)โ‰”{๐‘โˆˆ๐ต:โˆƒ๐‘Žโˆˆ๐ด,๐‘=๐‘“(๐‘Ž)}. alias image of ๐‘“, im(๐‘“), ๐‘“(๐ด)

codomain_(tag) co-domain(๐‘“)=๐ต. alias range ๅ€ผๅŸŸ

let ๐‘†โŠ‚๐ด

image_(tag) ๅƒ ๐‘“(๐‘†)โ‰”{๐‘โˆˆ๐ต:โˆƒ๐‘Žโˆˆ๐‘†,๐‘=๐‘“(๐‘Ž)}

let ๐‘†โŠ‚๐ต

inverse-image_(tag) ้€†ๅƒ ๐‘“โˆ’1(๐‘†)โ‰”{๐‘Žโˆˆ๐ด:โˆƒ๐‘โˆˆ๐‘†,๐‘=๐‘“(๐‘Ž)}

๐‘“(๐‘Ž)โˆˆ๐‘†โŸบโˆƒ๐‘โˆˆ๐‘†,๐‘=๐‘“(๐‘Ž)โŸบ๐‘Žโˆˆ๐‘“โˆ’1(๐‘†)

==>

๐‘“(๐‘†๐ด)โŠ‚๐‘†๐ตโŸบโˆ€๐‘Žโˆˆ๐‘†๐ด,๐‘“(๐‘Ž)โˆˆ๐‘†๐ตโŸบโˆ€๐‘Žโˆˆ๐‘†๐ด,๐‘Žโˆˆ๐‘“โˆ’1(๐‘†๐ต)โŸบ๐‘†๐ดโŠ‚๐‘“โˆ’1(๐‘†๐ต)

้€†ๅƒ ๐‘“โˆ’1 ไฟๆŒ โˆช,โˆฉ,โˆ–, e.g.

๐‘“โˆ’1(๐‘†โˆช๐‘†โ€ฒ)=๐‘“โˆ’1(๐‘†)โˆช๐‘“โˆ’1(๐‘†โ€ฒ)

ๅƒ ๐‘“ ๅชไฟๆŒ โˆช, ๅฏนไบŽๅ…ถๅฎƒ

  • ๐‘“(๐‘†โˆฉ๐‘†โ€ฒ)โŠ‚๐‘“(๐‘†)โˆฉ๐‘“(๐‘†โ€ฒ)
  • ๐‘“(๐‘†โˆ–๐‘†โ€ฒ)โŠ‚๐‘“(๐‘†)โˆ–๐‘“(๐‘†โ€ฒ)

cardinal-increase_(tag) |๐ด|<|Subset(๐ด)| (cf. #link(<cardinal>)[])

๐‘“:๐ดโ†’Subset(๐ด) ไธๆ˜ฏๆปกๅฐ„ <==> Subset(๐ด)โˆ–range(๐‘“)โ‰ โˆ…

ฮฉ:(๐ดโ†’ย Subset(๐ด))โŸถSubset(๐ด)๐‘“โŸฟ{๐‘ฅโˆˆ๐ด:๐‘(๐‘ฅ,๐‘“)}

find ๐‘(๐‘ฅ,๐‘“) so that ฮฉ(๐‘“)โˆ‰Range(๐‘“)

ฮฉ(๐‘“)โˆ‰Range(๐‘“)โŸบโˆ€๐‘Žโˆˆ๐ด,๐‘“(๐‘Ž)โ‰ ฮฉ(๐‘“)

to always have a element in set ฮฉ(๐‘“) that not in set ๐‘“(๐‘Ž), we can define

ฮฉ(๐‘“)={๐‘ฅโˆˆ๐ด:๐‘ฅโˆ‰๐‘“(๐‘ฅ)}

ๅˆ’ๅˆ† ๐‘‹. ็›ดๆŽฅ ๐‘‹=โจ†๐‘‹๐‘– ๆˆ–ๆŒ‰็…งๆ˜ ๅฐ„ ๐‘“:๐‘‹โ†’๐‘Œ ็š„ๅƒ้›†็š„้€†ๅƒ โจ†๐‘ฆโˆˆ๐‘Œ๐‘“โˆ’1(๐‘ฆ)

quotient_(tag) quotient ๐‘ฅโˆผ๐‘ฅโ€ฒ := ๐‘ฅ,๐‘ฅโ€ฒโˆˆ๐‘‹๐‘– or ๐‘ฅ,๐‘ฅโ€ฒโˆˆ๐‘“โˆ’1(๐‘ฆ)