composition (ๅฝๆฐๅคๅ)
let
define
ๅฎไน proposition, ๅๆฐ
- ๅๅฐ := . ่ฎฐๅท
- ๆปกๅฐ := . ่ฎฐๅท
- ๅๅฐ := ๅๅฐ and ๆปกๅฐ. ่ฎฐๅท . ๆญคๆถๆ้ๆ ๅฐ
cardinal
_(tag)
cardinal-always-comparable
_(tag) ๅ
็ด ๆฐ้ๅบ ็ไธๅ or ๅบๆปๆฏ #link(<order-comparable>)[ๅฏๆฏ่พ]
finite
_(tag) := . also let
finite <==>
ๆฏๆ้้ ==> ( ๆฏๅๅฐ or ๆปกๅฐ <==> ๆฏๅๅฐ)
Example ๆฏๆ ้้, ๆฏๅๅฐ and ไธๆฏๆปกๅฐ, so ไธๆฏๅๅฐ
- ๅฏๆฐๆ ้ :=
-
uncountable
_(tag) ไธๅฏๆฐ :=
-
countable
_(tag) ๅฏๆฐ := i.e. ๆ้ or ๅฏๆฐๆ ้
ไฟๆๅฏๆฐ็ๆไฝ. let , ๅฏๆฐ. ไปฅไธ้ๅๅฏๆฐ
- union: ,
- product: ,
range
_(tag) . alias image of , ,
codomain
_(tag) . alias range ๅผๅ
let
image
_(tag) ๅ
let
inverse-image
_(tag) ้ๅ
==>
้ๅ ไฟๆ , e.g.
ๅ ๅชไฟๆ , ๅฏนไบๅ
ถๅฎ
cardinal-increase
_(tag) (cf. #link(<cardinal>)[]
)
ไธๆฏๆปกๅฐ <==>
find so that
to always have a element in set that not in set , we can define
ๅๅ . ็ดๆฅ ๆๆ็
งๆ ๅฐ ็ๅ้็้ๅ
quotient
_(tag) quotient := or