å空éŽ
以äžçä»·
- not co-linear
if , å¯èœ
-
2 time(-like)
Example, where
å¯ä»¥çº¿æ§çæ - 1 time, 1 space
Example - 1 time, 1 null
Example - 2 null
Example . 泚æ . signature - 2 space.
Example
, where - other cases (symmetry of time space)
èèäžè¬ç äžç
signature-of-2d-subspace-of-spacetime
_(tag) Prop Minkowski åš ç çå¯èœ signature æ¯
Prop time-like åªæ£äº€äº space-like
let time-like. äœ¿çšæ£äº€åè§£, let then ==> space-like
Prop light-like äžæ£äº€äº
- time-like
- äžèªèº«å
±çº¿ ä¹å€ç light-like
metric-cannot-distinguish-colinear-light-like
_(tag)
Proof (ref-7, (ref-9, p.13))
æ ¹æ®æ åµåäžäžªæ£äº€åè§£
- time-like ==> let ==>
- light-like
æä»¬è¯æ
but
space-like äœé¿åºŠé¶, æä»¥
==>
Prop çäºç»Žå空éŽç signature äžå¯èœæ¯ or
Proof çšäžäžäžªå®ç
Prop ç䞀䞪äžå ±çº¿ time-like çå±åŒ ç signature æ¯
Proof ä»¥å ¶äžäžäžªäžºåå§çåºæ¥çæ æ£äº€åº, äœ signature äžèœæ¯ , æä»¥åªèœæ¯
çå°åœ±
Prop let , let time-like or light-like with äžå ±çº¿. å
Proof
å·²ç¥
åšå é¥äžçä»·äºè§£åé çäºæ¬¡æ¹çš
Prop ç䞀䞪äžå ±çº¿ light-like çå±åŒ ç signature æ¯ or
Proof Euclidean 没æ light-like, æä»¥æ å ¶å®å¯èœæ§
Example
- ç
- ç . çžååŸå°æ£äº€åº
simultaneity-relativity
_(tag) çžå¯¹è®ºåæ¶æ§
use æ£äº€åºå»¶æ
in , space-like å空éŽçæ£äº€è¡¥æ¯ time-like å空éŽ
-
( space-like <==> ååš time-like åæ¶æ£äº€äº )
-
( not space-like <==> äžååš time-like åæ¶æ£äº€äº space-like )
çŽè§: äžå space-like åç©ºéŽ æ æ³äœ¿çšå Œå®¹çæ¶éŽè®¡ç®æ¹åŒ or ç time-like æ£äº€è¡¥äžçžå
use æ£äº€åè§£
å类讚论 . å ç§¯çæ¶éŽçžä¹ç笊å·å³å®å 积ç笊å·
å类讚论 . å 积ç空éŽçžä¹ç笊å·å³å®å 积ç笊å·
in Euclidean, we have #link(<quadratic-form-inequality-Euclidean>)[å
积äžçåŒ]
==> #link(<triangle-inequality-Euclidean>)[äžè§äžçåŒ]
in signature äºæ¬¡å, è¿äžè¬äžæç«
å° äºæ¬¡å #link(<tensor-induced-quadratic-form>)[富åº]
å°äº€éäºé¶çº¿æ§
quadratic-form-inequality-Minkowski
_(tag) å
积äžçåŒ
in , let not co-linear, so
äºæ¬¡åéå¶åš äž, signature
- ==> ==>
- ==> ==>
Proof
==>
äºæ¬¡å富åºå°
signature
-
of ==> of
Proof
of æ£äº€åº , ==> æ£äº€åº ,==> , i.e. å 积äžçåŒ
-
of ==> of
==>
triangel-inequality-Minkowski
_(tag) äžè§äžçåŒ
- 2 time
,
- ==>
- ==>
- 1 time, 1 null
==>
- ==>
- ==>
Proof of 2 time-like
use #link(<quadratic-form-inequality-Minkowski>)[]
==>
==>
==>
==>
==>
äžç¡®å®
Example let . let è¿å» time-like
Euclidean 空éŽå·²ç»å¯ä»¥è®šè®ºäžåçæ¶ææ¹å e.g. åºå æ¯åŠæ¶æå° . èºæçº¿ like çäžè¥¿åšæ¹å空éŽäžæ¶æ
Euclidean 空éŽåšææ æ¹åæ¶æå°äžç¹ <==> åšæææ¹åäžèŽå°æ¶æå°äžç¹, by compactness of
Minkowski ç©ºéŽæ¹åç©ºéŽ is non compact. èœç¶æä»¬å°æªå®ä¹ ççœ
Minkowski 空éŽç #link(<net>)[]
éèŠè¶³å€è¿çŠ»å
é¥
let
å¯¹äºæ¶æçç±»æ¶æ¹å, å¯ä»¥ååŒ
- æªæ¥:
- è¿å»:
- æ··å: quotient æåå¶ , æäžº projective space åŒçæ¹å空éŽ
in
let
hyperbolic-complex
_(tag) 忲倿°. cf. #link(<split-complex-number>)[]
- æåé çå±åŒ
hyperbolic-exp
_(tag)
use äºé¡¹åŒ
-
-
-
, . by
polor-coordinate-hyperbolic
_(tag)åæ²æåæ , , . can come from æµå°çº¿é¿åºŠåæ°. ä¹ç§°äžºåæ²è§åºŠ
hyperbolic-angle
_(tag)æåæ å³è·çл忹åçåè§£
äžæ¯ æµå°çº¿é¿åºŠ, èæ¯ çé¿åºŠ
hyperbolic-isom
_(tag)
group isomorphism (æ¯èŸå€æ°çæ åµ)
åè°éå¢
è§£äºæ¬¡æ¹çš åŸå°éæ å°
inverse
Question 暡仿 çšçææåœ±å , çš #link(<stereographic-projective-hyperbolic>)[åæ²æåœ±]
å æ¥å€çåæ²è§åºŠ or æµå°çº¿é¿åºŠæ å°
çæµå°çº¿åæ å°±æ¯
è®°å·å²çª. æµå°çº¿åæ ä¹éåžžçšè®°å· , äœäžæ¯çš 代æ°å»å®ä¹ç
æµå°çº¿åæ æ¯ Riemman åæ or Euclidean åæ
compact <==> compact
åæ²æåæ
net structure of
è·çŠ» , æ¹åç©ºéŽ or å ¶å°åœ± , æµå°çº¿é¿åºŠ éœæ¯ invariant. æ¯ ç isometry group
è¿çŠ»å
é¥ å°å®ä¹ (time,future) #link(<net>)[çœ]
. äœäžºæµå°çº¿çååŸ
or è·çŠ»ç©ºéŽ åæ¹åç©ºéŽ ç product net struct
æéæ¹åŒ
- è·çŠ»è¿ç»
- æ¹åè¿ç»
in , ç±»æ¶ç±»ç©ºåºæ¬äžæ¯å¯¹ç§°ç, æä»¥ space like net 乿¯ç±»äŒŒç
((time,future),(time,future)) è¿ç» at :=
in åæ²æåæ
æšå¹¿å°é«ç»Ž
äºæ¬¡æµåœ¢ çå空éŽå¯ä»¥å®ä¹äžºæ£äº€äºåŸåç (仿å°) å空éŽ
äºæ¬¡æµåœ¢ çæµå°çº¿çå®ä¹äžéèŠæµåœ¢ææ¯, åªéèŠçšæµå°çº¿ as æªçº¿ of æªé¢ span by (åŸå + åå) + åµå ¥çåæ²çº¿ åå ¶æµå°çº¿é¿åºŠ. Question æ¯åŠæå¥œçè§£é?
type

type



geodesic-of-quadratic-manifold
_(tag) æµå°çº¿
let
æ£äº€è¡¥ç©ºéŽ , 绎类空
仿å°ç©ºéŽ as åç©ºéŽ of
let ,
æ¯äºç»Žå空éŽ, signature
, å¹¶äž çžäº€åŸå°åµå ¥ç
åŸå° åºç¹ æ¹åçæµå°çº¿
æµå°çº¿ç
where
ç (time,future)-like net struct


åæ²æåæ as è·çŠ»ç©ºéŽ åæ¹åç©ºéŽ ç product net struct
æéæ¹åŒ: , . or è·çŠ»è¿ç» + æ¹åè¿ç»
(time,future),(time,future) è¿ç» at :=
in åæ²æåæ (time,future)
let
æ£äº€è¡¥ç©ºéŽ
仿å°ç©ºéŽ as åç©ºéŽ of
let ,
- ç±»æ¶
signature
äž çžäº€åŸå°åµå ¥ç
åŸå° åºç¹ æ¹åçæµå°çº¿
- 类空
signature
äž çžäº€åŸå°åµå ¥ç
åŸå° åºç¹ æ¹åçæµå°çº¿
äžæ¯ Euclidean type metric æµåœ¢, æä»¥æµå°çº¿ççæŠå¿µéèŠä¿®æ¹
space like æ¹åç©ºéŽ çæµå°çº¿åæ , æ ¹æ®ç»Žæ°åœçº³, äœ¿çš ç net struct, åŸå° ç local net struct
ç±äº net æ¯ product type åè§£ç, æä»¥åœçº³äžå»å€§æŠäŒåè§£å°å€äžªäžç»ŽååŸ, ç§°ä¹äžº multi-radius-geodesic-ball
_(tag) . å解顺åºäŒåœ±åå?
ç¶åå°è¯çšåæ²æåæ i.e. è·çл忹åç product net struct å®ä¹ ç space-like net struct
ç¶åå¯ä»¥å®ä¹ (space,space)-like è¿ç» at , æç®ç§° space-like è¿ç»
signature çæ åµåºè¯¥æ¯ç±»äŒŒç
çç±»æ¶çœå类空çœå¹¶äžçä»·
Minkowski è¿ç»å®ä¹äžº time-like è¿ç» and space-like è¿ç»
Minkowski è¿ç»åèå®ä¹äžº éœæ¯ Minkowski è¿ç»
all éœæ¯è¿ç»äžåè
äžè¬çº¿æ§åœæ°å¯èœäž Minkowski è¿ç»
æµå°çº¿åæ or åæ²æåæ æç §å®ä¹æ¯å±éš Minkowski åèæå±éš Euclidean åè
æ¯ Riemman manifold, const negative curvature
æ¯ Lorentz manifold, const positive curvature
alias de Sitter space
hyperbolic-cosine-formula
_(tag) åæ²äœåŒŠå
¬åŒ
let
let
let æªæ¥ time-like.
äœåŒŠå ¬åŒ
isom-top-hyperbolic-Euclidean
_(tag)
åš è·çŠ»äžçæéç»æ æµå°çº¿è·çŠ» Euclidean
Proof
let ,
let
use
use è¿ç»æ§
æšå¹¿å° , Euclidean
Proof
use æµå°çº¿åæ
similar to , try to prove
where
- æ¯ çæµå°çº¿åæ
- æ¯æµå°çº¿åæ äžç Euclid è·çŠ»
çé¢ ççææåœ±çåºç¹åš äž. éèŠäž€äžªä»¥äžçåæ å¡èŠçå šéš
stereographic-projective-hyperbolic
_(tag) time-like åæ²é¢ èèçææåœ±, 䞀䞪åºç¹åå«åšäž€æåæ²é¢äž, äžæåœ±åšå
饿¹å圢æåéçå¥ç¹

space-like åæ²é¢, çš space-like åºç¹æ¥å®ä¹åæ²æåœ±, èäžæåœ±åæ å¡æ¯äœäžç»Žç Minkowski 空éŽ
蜬æ¢åœæ°åºè¯¥æ¯ Minkowski è¿ç»åè?

对 çæ åµè¿è¡ 3d äœåŸ, ç»åºåºç¹çå é¥ (æ³šææ¯å 饿¯ "纵å" ç)
å³äœ¿ç»åŸççŽè§å¯èœéŸ, è§£æè®¡ç®åºè¯¥æ¯äžéŸç
å¯ä»¥æšå¹¿å° and ?