1. notice
  2. English
  3. 1. feature
  4. logic-topic
  5. 2. logic
  6. 3. set-theory
  7. 4. map
  8. 5. order
  9. 6. combinatorics
  10. calculus
  11. 7. real-numbers
  12. 8. limit-sequence
  13. 9. โ„^n
  14. 10. Euclidean-space
  15. 11. Minkowski-space
  16. 12. polynomial
  17. 13. analytic-Euclidean
  18. 14. analytic-Minkowski
  19. 15. analytic-struct-operation
  20. 16. ordinary-differential-equation
  21. 17. volume
  22. 18. integral
  23. 19. divergence
  24. 20. limit-net
  25. 21. compact
  26. 22. connected
  27. 23. topology-struct-operation
  28. 24. exponential
  29. 25. angle
  30. geometry
  31. 26. manifold
  32. 27. metric
  33. 28. metric-connection
  34. 29. geodesic-derivative
  35. 30. curvature-of-metric
  36. 31. Einstein-metric
  37. 32. constant-sectional-curvature
  38. 33. simple-symmetric-space
  39. 34. principal-bundle
  40. 35. group-action
  41. 36. stereographic-projection
  42. 37. Hopf-bundle
  43. field-theory
  44. 38. point-particle-non-relativity
  45. 39. point-particle-relativity
  46. 40. scalar-field
  47. 41. scalar-field-current
  48. 42. scalar-field-non-relativity
  49. 43. projective-lightcone
  50. 44. spacetime-momentum-spinor-representation
  51. 45. Lorentz-group
  52. 46. spinor-field
  53. 47. spinor-field-current
  54. 48. electromagnetic-field
  55. 49. Laplacian-of-tensor-field
  56. 50. Einstein-metric
  57. 51. interaction
  58. 52. harmonic-oscillator-quantization
  59. 53. spinor-field-misc
  60. 54. reference
  61. ไธญๆ–‡
  62. 55. notice
  63. 56. feature
  64. ้€ป่พ‘
  65. 57. ้€ป่พ‘
  66. 58. ้›†ๅˆ่ฎบ
  67. 59. ๆ˜ ๅฐ„
  68. 60. ๅบ
  69. 61. ็ป„ๅˆ
  70. ๅพฎ็งฏๅˆ†
  71. 62. ๅฎžๆ•ฐ
  72. 63. ๆ•ฐๅˆ—ๆž้™
  73. 64. โ„^n
  74. 65. Euclidean ็ฉบ้—ด
  75. 66. Minkowski ็ฉบ้—ด
  76. 67. ๅคš้กนๅผ
  77. 68. ่งฃๆž (Euclidean)
  78. 69. ่งฃๆž (Minkowski)
  79. 70. ่งฃๆž struct ็š„ๆ“ไฝœ
  80. 71. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  81. 72. ไฝ“็งฏ
  82. 73. ็งฏๅˆ†
  83. 74. ๆ•ฃๅบฆ
  84. 75. ็ฝ‘ๆž้™
  85. 76. ็ดง่‡ด
  86. 77. ่ฟž้€š
  87. 78. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  88. 79. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  89. 80. ่ง’ๅบฆ
  90. ๅ‡ ไฝ•
  91. 81. ๆตๅฝข
  92. 82. ๅบฆ่ง„
  93. 83. ๅบฆ่ง„็š„่”็ปœ
  94. 84. Levi-Civita ๅฏผๆ•ฐ
  95. 85. ๅบฆ่ง„็š„ๆ›ฒ็އ
  96. 86. Einstein ๅบฆ่ง„
  97. 87. ๅธธๆˆช้ขๆ›ฒ็އ
  98. 88. simple-symmetric-space
  99. 89. ไธปไธ›
  100. 90. ็พคไฝœ็”จ
  101. 91. ็ƒๆžๆŠ•ๅฝฑ
  102. 92. Hopf ไธ›
  103. ๅœบ่ฎบ
  104. 93. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  105. 94. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  106. 95. ็บฏ้‡ๅœบ
  107. 96. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  108. 97. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  109. 98. ๅ…‰้”ฅๅฐ„ๅฝฑ
  110. 99. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  111. 100. Lorentz ็พค
  112. 101. ๆ—‹้‡ๅœบ
  113. 102. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  114. 103. ็”ต็ฃๅœบ
  115. 104. ๅผ ้‡ๅœบ็š„ Laplacian
  116. 105. Einstein ๅบฆ่ง„
  117. 106. ็›ธไบ’ไฝœ็”จ
  118. 107. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  119. 108. ๆ—‹้‡ๅœบๆ‚้กน
  120. 109. ๅ‚่€ƒ

note-math

May migrate to principal-bundle-connection in the future?

cf. motivation-of-gauge-field

There are many possible connections

There are connections that cannot be local flat. For any local region, the connection field cannot be eliminated by changing the gauge.

Similar to flat-metric-iff-curvature-0

There exist local bundle coordinates or phases, where the connection is zero <==> the curvature is zero where , in coordinates

When not exist flat connection coordinate, choose minimal curvature, based on metric-volume-form

Example

case. is valued, and it is commutative . In this case , in coordinates

Transforming from local flat-connection coordinates to general coordinates gives a PDE

PDE solvable condition

From the solution of the PDE , integration gives and phase transformation

[electromagnetic-field]

In

There are many possible connections; select by minimizing curvature.

Note that means the definition of this action requires spacetime metric

eq

In coordinates

In spacetime decomposition coordinates

Of course, this decomposition method is not invariant

Question How to make obviously imply the form of the electromagnetic field equations? [Maxwell-equation]

Also

Where

Note that and exterior derivative are related to Hodge star. can also be related to Hodge star. It may be related to the behavior of Hodge star in the spatial coordinates of spacetime decomposition.

Note that Hodge star requires a metric

Using the special specification [Lorentz-gauge] , the equation becomes