1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

May migrate to principal-bundle-connection in the future?

cf. #link(<motivation-of-gauge-field>)[]

There are many possible connections

There are connections that cannot be local flat. For any local region, the connection field cannot be eliminated by changing the gauge.

Similar to #link(<flat-metric-iff-curvature-0>)[]

There exist local bundle coordinates or phases, where the connection is zero ๐ด=0 <==> the curvature is zero ๐น๐‘–๐‘–โ€ฒ=[๐ท๐‘–,๐ท๐‘–โ€ฒ]=0 where ๐ท=๐‘‘+๐ด, in coordinates ๐น๐‘–๐‘–โ€ฒ=โˆ‚๐‘–๐ด๐‘–โ€ฒโˆ’โˆ‚๐‘–โ€ฒ๐ด๐‘–+[๐ด๐‘–,๐ด๐‘–โ€ฒ]

When not exist flat connection coordinate, choose ๐ฟ2 minimal curvature, ๐ฟ2 based on metric-volume-form

Example

Uย (1) case. ๐ด is uย (1) valued, and it is commutative [๐ด,๐ดโ€ฒ]=0. In this case ๐น=๐‘‘๐ด, in coordinates ๐น๐‘–๐‘—=โˆ‚๐‘–๐ด๐‘—โˆ’โˆ‚๐‘—๐ด๐‘–

Transforming from local flat-connection coordinates ๐ดโ€ฒ=0 to general coordinates gives a PDE

๐ด=๐‘‘๐œƒ

PDE solvable condition 0=๐น=๐‘‘๐ด

From the solution of the PDE ๐ด=๐‘‘๐œƒ, integration gives ๐œƒ and phase transformation ๐‘’๐œƒ

electromagnetic-field_(tag)

In โ„1,3

There are many possible connections; select by minimizing curvature.

Note that Vol means the definition of this action requires spacetime metric

โˆซ๐‘‘ย Volย |๐น|2

eq

๐‘‘โ€ ๐‘‘๐ด=0

In coordinates

โˆ‘๐‘–โˆ‚๐‘–(โˆ‚๐‘–๐ด๐‘—โˆ’โˆ‚๐‘—๐ด๐‘–)=0ย orโˆ‘๐‘–โˆ‚๐‘–๐น๐‘–๐‘—=0

In spacetime decomposition coordinates

๐น=๐ธ๐‘–(๐‘‘๐‘กโˆง๐‘‘๐‘ฅ๐‘–)โˆ’๐ต๐‘–๐‘—(๐‘‘๐‘ฅ๐‘–โˆง๐‘‘๐‘ฅ๐‘—)ย withย 1โ‰ค๐‘–<๐‘—โ‰ค3

Of course, this decomposition method is not SO(1,3) invariant

Question How to make โˆ‘๐‘–โˆ‚๐‘–(โˆ‚๐‘–๐ด๐‘—โˆ’โˆ‚๐‘—๐ด๐‘–)=0 obviously imply the div,ย curl form of the electromagnetic field ๐ธ,๐ต equations? Maxwell-equation_(tag)

divย ๐ต=0โˆ‚๐‘ก๐ต+ย curlย ๐ธ=0ย divย ๐ธ=๐œŒโˆ’โˆ‚๐‘ก๐ธ+ย curlย ๐ต=๐‘—

Also

๐ธ=โˆ’(โˆ‚๐‘กย Aย +ย gradย ฯ•)๐ต=ย curlย ย A

Where ฯ•=๐ด.time,ย Aย =๐ด.space

Note that curl,ย div and โ„3 exterior derivative are related to โ„3 Hodge star. ๐‘‘โ€ โˆผโ‹†๐‘‘โ‹† can also be related to Hodge star. It may be related to the behavior of Hodge star in the spatial โ„3โŠ‚โ„1,3 coordinates of spacetime decomposition. โ‹†(๐‘‘๐‘ฅ๐‘–โˆง๐‘‘๐‘ฅ๐‘—)=ยฑ๐‘‘๐‘กโˆง๐‘‘๐‘ฅ๐‘˜

Note that Hodge star requires a metric

Using the special specification Lorentz-gauge_(tag) ๐‘‘โ€ ๐ด=0, the equation ๐‘‘โ€ ๐‘‘๐ด=0 becomes

0=(๐‘‘โ€ ๐‘‘+๐‘‘๐‘‘โ€ )๐ด=โˆ†๐ด=๐œ‚๐‘–๐‘–โ€ฒโˆ‚๐‘–โˆ‚๐‘–โ€ฒ๐ด