1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

In order to deal with the power series of โ„1,๐‘›, we need to deal with the series of the range โ„1,๐‘› first.

For now, only consider the timelike future case.

sum-preserve-time-future_(tag) let ๐‘ฃ,๐‘ค be timelike future, then ๐‘ฃ+๐‘ค is timelike future

โŸจ๐‘ฃ+๐‘คโŸฉ2=โŸจ๐‘ฃโŸฉ2+โŸจ๐‘คโŸฉ2+2โŸจ๐‘ฃ,๐‘คโŸฉ

โŸจ๐‘ฃ,๐‘คโŸฉ>0

|๐‘ฃ+๐‘ค|โ‰ฅ|๐‘ฃ|+|๐‘ค| (#link(<quadratic-form-inequality-Minkowski>)[Triangle Inequality])

|๐‘ฃ+๐‘ค|>|๐‘ฃ|,|๐‘ค|

let ๐‘ฅ๐‘› be timelike future or 0

then ๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘› is timelike future or 0

|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›|โ‰ฅ|๐‘ฅ1|+โ‹ฏ+|๐‘ฅ๐‘›|

|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›|โ‰ฅ|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›โˆ’1|, or ๐‘›โ‡|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›|โ‰ฅ0 monotonically increasing increasing-length-of-time-future-series_(tag)

let ๐‘ฃ,๐‘ค time future, not co-linear. span(๐‘ฃ,๐‘ค)โ‰ƒโ„1,1 cf. #link(<signature-of-2d-subspace-of-spacetime>)[]

Through SO(1,๐‘›) transformation, we can assume that the center of the geodesic ball is (0,โ€ฆ,0,1)

sum-preserve-angle-range_(tag)

let the directions ๐‘ฃ|๐‘ฃ|,๐‘ค|๐‘ค| of ๐‘ฃ,๐‘ค be contained in the geodesic ball exph([โˆ’๐‘…,๐‘…]ย iย split) of โ„๐•ช

==> the direction ๐‘ฃ+๐‘ค|๐‘ฃ+๐‘ค| of ๐‘ฃ+๐‘ค is in the geodesic ball exph([โˆ’๐‘…,๐‘…]ย iย split)

Proof

Question Is there a more direct proof?

let

๐‘ฃ=|๐‘ฃ|ย exphย (ฯ•ย iย split)๐‘ค=|๐‘ค|ย exphย (๐œ“ย iย split)

let |ฯ•|,|๐œ“|โ‰ค๐‘…

Mapping the geodesic length ๐‘Ÿ of the hyperbola to the spatial axis sinhย ๐‘Ÿ is a monotonically bijective map (Figure) The geodesic length of a hyperbola, ๐‘Ÿ, is a bijection. The hyperbola map to the spatial axis and is a bijection. After composition, it is sinhย ๐‘Ÿ, a bijection, remains monotone.

arghย (๐‘ฃ+๐‘ค|๐‘ฃ+๐‘ค|)โ†’imย ๐‘ฃ+๐‘ค|๐‘ฃ+๐‘ค|(imย ย ofย โ„‚ย split)=|๐‘ฃ|ย sinhย ฯ•+|๐‘ค|ย sinhย ๐œ“(|๐‘ฃ|2+|๐‘ค|2+2|๐‘ฃ||๐‘ค|ย coshย (๐œ“โˆ’ฯ•))12ย coshย โ‰ฅ1โ‰ค|๐‘ฃ|ย sinhย ๐‘…+|๐‘ค|ย sinhย ๐‘…(|๐‘ฃ|2+|๐‘ค|2+2|๐‘ฃ||๐‘ค|ย coshย (๐‘…โˆ’๐‘…))12=sinhย ๐‘…|arghย (๐‘ฃ+๐‘ค|๐‘ฃ+๐‘ค|)|โ‰ค๐‘…

let ๐‘ฅ๐‘› direction ๐‘ฅ๐‘›|๐‘ฅ๐‘›| in โ„๐•ช๐‘›(time,future) geodesic ball ๐”น

==> ๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›โˆˆ๐”น

Proof use span(๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›โˆ’1,๐‘ฅ๐‘›) signature 1,1, embed โ„๐•ช, induction

quadratic-form-inequality-Minkowski-another_(tag)

let the directions of ๐‘ฃ,๐‘ค in โ„๐•ช geodesic ball exph([โˆ’๐‘…,๐‘…]ย iย split)

==> โŸจ๐‘ฃ,๐‘คโŸฉโ‰ค|๐‘ฃ||๐‘ค|cosh(2๐‘…)

Proof use โŸจ๐‘ฃ,๐‘คโŸฉ=|๐‘ฃ||๐‘ค|ย coshย (๐œ“โˆ’ฯ•) cf. #link(<hyperbolic-cosine-formula>)[]

let ๐‘ฅ๐‘› time future, direction ๐‘ฅ๐‘›|๐‘ฅ๐‘›| in โ„๐•ช๐‘›(time,future) geodesic sphere ๐”น with radius ๐‘…

|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›|2=|๐‘ฅ1|2+โ‹ฏ+|๐‘ฅ๐‘›|2+2โˆ‘1โ‰ค๐‘–<๐‘—โ‰ค๐‘›โŸจ๐‘ฅ๐‘–,๐‘ฅ๐‘—โŸฉโ‰ค|๐‘ฅ1|2+โ‹ฏ+|๐‘ฅ๐‘›|2+2cosh(2๐‘…)โˆ‘1โ‰ค๐‘–<๐‘—โ‰ค๐‘›|๐‘ฅ๐‘–||๐‘ฅ๐‘—|

==> use coshย โ‰ฅ1

|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›|2โ‰คcosh(2๐‘…)(|๐‘ฅ1|+โ‹ฏ+|๐‘ฅ๐‘›|)2

absolute-convergence-Minkowski-distance_(tag) โˆ‘๐‘–=1โˆž|๐‘ฅ๐‘–|<โˆž ==> #link(<increasing-length-of-time-future-series>)[monotonically increasing] bounded limย ๐‘›โ†’โˆž|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›|<โˆž limit exists

Minkowski-power-series_(tag)

let โˆ‘๐‘–=1โˆž|๐‘ฅ๐‘–|<โˆž

  • Distance |๐‘ฆ|=ย limย ๐‘›โ†’โˆž|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›| limit exists (previous theorem)
  • Direction ๐‘ฆ|๐‘ฆ|=ย limย ๐‘›โ†’โˆž๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›|โˆˆ๐”น, limit existence to be proved

have property

  • ๐‘ฆโˆ’(๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›) time future
  • lim๐‘›โ†’โˆž|๐‘ฆโˆ’(๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›)|=0

Called Minkowski series convergence โˆ‘๐‘–=1โˆž๐‘ฅ๐‘–=๐‘ฆ

Proof of convergence in direction space

  • Direction ๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›| converges

Question Is there a more direct proof

use #link(<isom-top-hyperbolic-Euclidean>)[]. โ„1,๐‘› distance restricted in โ„๐•ช๐‘›(time,future) is equivalent to the geodesic distance as a Riemman manifold, โ„๐•ช๐‘› subtraction of two elements is โ„1,๐‘› spacelike

we prove ๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›| Cauchy in โ„๐•ช๐‘›(time,future)

limย ๐‘›โ†’โˆž|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›|<โˆž ==> |๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›| is a Cauchy sequence

==> all ๐œ€>0, exist ๐‘›โˆˆโ„•, all ๐‘šโˆˆโ„•
|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›+๐‘š|โˆ’|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›|<๐œ€

let

๐‘ฃ=๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›,๐‘ค=๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›+๐‘š. use โ„๐•ช๐‘› subtraction of two points is โ„1,๐‘› spacelike

0โ‰คโˆ’โŸจ๐‘ฃ|๐‘ฃ|โˆ’๐‘ค|๐‘ค|โŸฉ2=โˆ’2(1โˆ’โŸจ๐‘ฃ|๐‘ฃ|,๐‘ค|๐‘ค|โŸฉ)=2(โŸจ๐‘ฃ,๐‘คโŸฉโˆ’|๐‘ฃ||๐‘ค||๐‘ฃ||๐‘ค|)

use 1|๐‘ฃ||๐‘ค|=1|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›+๐‘š||๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›|โ‰ค1|๐‘ฅ1|2 (or other) does not affect the limit โ†’๐‘›โ†’โˆž0

use #link(<sum-preserve-time-future>)[]. ๐‘คโˆ’๐‘ฃ is time-like, |๐‘ค|>|๐‘ฃ|. use #link(<triangel-inequality-Minkowski>)[triangle inequality] |๐‘ค|โ‰ฅ|๐‘คโˆ’๐‘ฃ|+|๐‘ฃ|, use Cauchy |๐‘ค|โˆ’|๐‘ฃ|<๐œ€

==> |๐‘คโˆ’๐‘ฃ|โ‰ค|๐‘ค|โˆ’|๐‘ฃ|<๐œ€

==> |๐‘คโˆ’๐‘ฃ|2โ‰ค(|๐‘ค|โˆ’|๐‘ฃ|)2<๐œ€2

==> 0โ‰ค(|๐‘ค|โˆ’|๐‘ฃ|)2โˆ’|๐‘คโˆ’๐‘ฃ|2<๐œ€2

==> 2(โŸจ๐‘ฃ,๐‘คโŸฉโˆ’|๐‘ฃ||๐‘ค|)<๐œ€2

==> ๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›|๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›| Cauchy in โ„๐•ช๐‘›(time,future)

  • Inner product converges

let ๐‘ฆ=|๐‘ฆ|ย exphย ฯ•
let ๐‘ง=|๐‘ง|ย exphย ๐œ“ time future
for ๐‘ฆ๐‘›โ†’๐‘ฆ use hyperbolic cosine

โŸจ๐‘ฆ,๐‘งโŸฉ=|๐‘ฆ||๐‘ง|ย coshย (|ฯ•โˆ’๐œ“|)=limย ๐‘›โ†’โˆž|๐‘ฆ๐‘›||๐‘ง|cosh(|ฯ•๐‘›โˆ’๐œ“|)ย distanceย |๐‘ฆ๐‘›|โˆงย directionย ฯ•๐‘›=limย ๐‘›โ†’โˆžโŸจ๐‘ฆ๐‘›,๐‘งโŸฉ
  • ๐‘ฆโˆ’(๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›) is time-like
โŸจ๐‘ฆโˆ’(๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›)โŸฉ2=โŸจ๐‘ฆโˆ’๐‘ฆ๐‘›โŸฉ2=๐‘ฆ2+๐‘ฆ๐‘›2โˆ’2โŸจ๐‘ฆ,๐‘ฆ๐‘›โŸฉ=limย ๐‘šโ†’โˆž(๐‘ฆ๐‘›+๐‘š2+๐‘ฆ๐‘›2โˆ’2โŸจ๐‘ฆ๐‘›+๐‘š,๐‘ฆ๐‘›โŸฉ)=limย ๐‘šโ†’โˆžโŸจ๐‘ฆ๐‘›+๐‘šโˆ’๐‘ฆ๐‘›โŸฉ2

where โŸจ๐‘ฆ๐‘›+๐‘šโˆ’๐‘ฆ๐‘›โŸฉ2=โŸจ๐‘ฅ๐‘›+1+โ‹ฏ+๐‘ฅ๐‘›+๐‘šโŸฉ2โ‰ฅ0

  • ๐‘ฆโˆ’(๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›) future
โŸจ๐‘ฆโˆ’(๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›),๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›โŸฉ=โŸจ๐‘ฆ,๐‘ฆ๐‘›โŸฉโˆ’โŸจ๐‘ฆ๐‘›,๐‘ฆ๐‘›โŸฉ=(limย ๐‘šโ†’โˆžโŸจ๐‘ฆ๐‘›+๐‘š,๐‘ฆ๐‘›โŸฉ)โˆ’โŸจ๐‘ฆ๐‘›,๐‘ฆ๐‘›โŸฉ=limย ๐‘šโ†’โˆžโŸจ๐‘ฆ๐‘›+๐‘šโˆ’๐‘ฆ๐‘›,๐‘ฆ๐‘›โŸฉ

where โŸจ๐‘ฆ๐‘›+๐‘šโˆ’๐‘ฆ๐‘›,๐‘ฆ๐‘›โŸฉ=โŸจ๐‘ฅ๐‘›+1+โ‹ฏ+๐‘ฅ๐‘›+๐‘š,๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›โŸฉโ‰ฅ0

lim๐‘›โ†’โˆžโŸจ๐‘ฆโˆ’(๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘›)โŸฉ2=limย ๐‘›โ†’โˆž(๐‘ฆ2+๐‘ฆ๐‘›2โˆ’2โŸจ๐‘ฆ,๐‘ฆ๐‘›โŸฉ)=0

Process power series

let ๐ด๐‘›โˆˆLin(โŠ™๐‘›โ„1,3โ†’โ„1,3)

Minkowski-analytic_(tag) Minkowski analytic

โˆ‘๐‘›=1โˆž๐ด๐‘›(๐‘ฃ๐‘›) (zero order does not affect)

let geodesic coordinates argh:โ„๐•ช๐‘›โ†’โ„๐‘›

Target's ๐ด๐‘› property

  • ๐‘ฃ time future ==> ๐ด๐‘›(๐‘ฃ๐‘›) time future

  • Defining the norm gives absolute convergence

use geometric series control like #link(<linear-map-induced-norm>)[the case of Euclidean]

|๐ด๐‘›|(๐‘…)โ‰”sup๐‘ฃโˆˆโ„๐•ช๐‘›|argh(๐‘ฃ)|โ‰ค๐‘…|๐ด๐‘›(๐‘ฃ๐‘›)|=sup|argh(๐‘ฃ)|โ‰ค๐‘…|๐ด๐‘›(๐‘ฃ๐‘›)||๐‘ฃ|๐‘›๐œŒ(๐‘…)โ‰”limโ€‰sup๐‘›โˆˆโ„•{|๐ด๐‘›|(๐‘…)1๐‘›}โˆ’1

==> |argh(๐‘ฃ)|<๐‘… and |๐‘ฃ|<๐œŒ(๐‘…) ==> โˆ‘|๐ด๐‘›(๐‘ฃ๐‘›)|โ‰คโˆ‘(|๐‘ฃ|๐œŒ(๐‘…))๐‘›=11โˆ’|๐‘ฃ|๐œŒ(๐‘…)โˆ’1<โˆž

  • Question Similar to the Euclidean case, the radius of convergence contains Minkowski continuity i.e. continuity of distance and direction, and has absolute uniform convergence properties

Example Question

  • exph is โ„‚splitย โ‰ƒโ„1,1 Minkowski analytic

  • Similar to complex analysis, โ„‚split analytic ==> โ„1,1 Minkowski analytic

  • Similar to the Euclidean case, PDE, characteristic functions, and special functions may provide more examples of Minkowski-analytic

Question let ๐‘“:โ„1,๐‘‘โ†’โ„1,๐‘‘ Euclidean analytic โ„1+๐‘‘, ๐‘‘๐‘“โˆˆSO(1,๐‘‘) ==> ๐‘“ Minkowski analytic?

Question Regarding Minkowski analytic, consider corresponding to Euclidean's #link(<analytic-continuation>)[], #link(<power-series-space>)[], #link(<analytic-space>)[]

More |argh(๐‘ฃ)|โ‰ค๐‘…, parameter ๐‘…

Series or function triangle inequality may need to add a version with parameter coshย (2๐‘…) correction

When approximating the net of analytic function spaces, we also need ๐‘…โ†’โˆž as the limit of the entire direction space