1. notice
  2. äž­æ–‡
  3. 1. feature
  4. 逻蟑
  5. 2. 逻蟑
  6. 3. 集合论
  7. 4. 映射
  8. 5. 序
  9. 6. 组合
  10. 埮积分
  11. 7. 实数
  12. 8. 数列极限
  13. 9. ℝ^n
  14. 10. Euclidean 空闎
  15. 11. Minkowski 空闎
  16. 12. 倚项匏
  17. 13. 解析 (Euclidean)
  18. 14. 解析 (Minkowski)
  19. 15. 解析 struct 的操䜜
  20. 16. 垞埮分方皋
  21. 17. 䜓积
  22. 18. 积分
  23. 19. 散床
  24. 20. 眑极限
  25. 21. 玧臎
  26. 22. 连通
  27. 23. 拓扑 struct 的操䜜
  28. 24. 指数凜数
  29. 25. 角床
  30. 几䜕
  31. 26. 流圢
  32. 27. 床规
  33. 28. 床规的联络
  34. 29. Levi-Civita 富数
  35. 30. 床规的曲率
  36. 31. Einstein 床规
  37. 32. 垞截面曲率
  38. 33. simple-symmetric-space
  39. 34. 䞻䞛
  40. 35. 矀䜜甚
  41. 36. 球极投圱
  42. 37. Hopf 供
  43. 场论
  44. 38. 非盞对论点粒子
  45. 39. 盞对论点粒子
  46. 40. 纯量场
  47. 41. 纯量场的守恒流
  48. 42. 非盞对论纯量场
  49. 43. 光锥射圱
  50. 44. 时空劚量的自旋衚瀺
  51. 45. Lorentz 矀
  52. 46. 旋量场
  53. 47. 旋量场的守恒流
  54. 48. 电磁场
  55. 49. 匠量场的 Laplacian
  56. 50. Einstein 床规
  57. 51. 盞互䜜甚
  58. 52. 谐振子量子化
  59. 53. 参考
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. ℝ^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

Subspace span(𝑣,𝑀)↪ℝ𝑝,𝑞

The following are equivalent

  • dim(span(𝑣,𝑀))=2
  • 𝑣,𝑀 not co-linear
  • 𝑣∧𝑀≠0

if span(𝑣,𝑀)≃ℝ1,1, possible

  • 2 time(-like)
    Example

    𝑣=(10),𝑀=(𝑎𝑏), where 0<|𝑏|<|𝑎|
    ⟚𝑀⟩2=𝑎2−𝑏2>0
    Can linearly generate (01)
  • 1 time, 1 space
    Example 𝑣=(10),𝑀=(01)
  • 1 time, 1 null
    Example 𝑣=(10),𝑀=(𝑎𝑎)
  • 2 null
    Example ℝ1,1,𝑣=(𝑎𝑎),𝑀=(𝑎−𝑎). Note that 𝑣⋅𝑀=2𝑎2≠0. signature (1,1)
  • 2 space.
    Example
    𝑣=(01),𝑀=(𝑎𝑏), where 0<|𝑎|<|𝑏|
  • other cases (symmetry of time ⟷ space)

Consider the general ℝ1,𝑛 in span(𝑣,𝑀)

signature-of-2d-subspace-of-spacetime_(tag) Prop The possible signature of Minkowski (1,𝑛) in dim =2's span(𝑣,𝑀) is

  • 1,1
  • 0,2
  • 0,1

Prop time-like is only orthogonal to space-like

let 𝑣 time-like. Using orthogonal decomposition, let 𝑣=𝑣0,𝑀=𝑀0+𝑀 then ⟚𝑣,𝑀⟩=𝑣0𝑀0=0⟹𝑀0=0 ==> 𝑀 space-like

Prop light-like 𝑣 is not orthogonal to

  • time-like
  • light-like other than collinear with itself 𝑘𝑣 metric-cannot-distinguish-colinear-light-like_(tag)

Proof (ref-7, (ref-9, p.13))

Take an orthogonal decomposition according to the situation ℝ1,𝑛=ℝ time ⊕ℝ space𝑛

𝑣=𝑣0+𝑣𝑀=𝑀0+𝑀
  • 𝑀 time-like ==> let 𝑀=𝑀0 ==> ⟚𝑣,𝑀⟩=𝑣0𝑀0≠0
  • 𝑀 light-like
⟚𝑣⟩2=0⟹𝑣02=⟚𝑣⟩2⟚𝑀⟩2=0⟹𝑀02=⟚𝑀⟩2⟚𝑣,𝑀⟩=0⟹𝑣0𝑀0=⟚𝑣,𝑀⟩

We prove that 𝑀0⋅𝑣=𝑣0⋅𝑀

𝑀0⋅𝑣−𝑣0⋅𝑀=𝑀0⋅𝑣−𝑣0⋅𝑀∈ℝ space𝑛

but

⟚𝑀0⋅𝑣−𝑣0⋅𝑀⟩2=𝑀02⟚𝑣⟩2−2𝑣0𝑀0⋅⟚𝑣,𝑀⟩+𝑣02⟚𝑀⟩2=0

space-like but length zero, so 𝑀0⋅𝑣−𝑣0⋅𝑀=0

==> 𝑀0⋅𝑣−𝑣0⋅𝑀=0

Prop The signature of the two-dimensional subspace of ℝ1,𝑛 cannot be 1,0 or 0,0

Proof Use the previous theorem

Prop The signature of span(𝑣,𝑀) expanded by two non-collinear time-like 𝑣,𝑀 is 1,1

Proof Generate an orthogonal basis of span(𝑣,𝑀) with one of them as the initial basis, but the signature cannot be 1,0, so it can only be 1,1

The projection of 𝑣 is {𝑘𝑣∈ℝ1,3:𝑘∈ℝ}⊂ cone

Prop let ⟚𝑣⟩2=0, let 𝑀 time-like or light-like with 𝑣,𝑀 non-collinear. Then span(𝑣,𝑀)⊄ cone

Proof

Known ⟚𝑣,𝑀⟩≠0

On the light cone, it is equivalent to solving the quadratic equation for the variable 𝑏: 0=(𝑎𝑣+𝑏𝑀)2=𝑎𝑏⋅⟚𝑣,𝑀⟩+𝑏2⋅⟚𝑀⟩2=𝑏(𝑏⋅⟚𝑀⟩2+𝑎⋅⟚𝑣,𝑀⟩)

𝑏≠0⟹𝑏={−𝑎⋅⟚𝑣,𝑀⟩⟚𝑀⟩2 if ⟚𝑀⟩2≠0ℝ if ⟚𝑀⟩2=0

Prop The signature of the span span(𝑣,𝑀) of two non-collinear light-like 𝑣,𝑀 in ℝ1,𝑛 is 1,1 or 0,1

Proof ℝ0,2 Euclidean has no light-like, so there is no other possibility

Example

  • ℝ1,1's (1±1)
  • ℝ1,2's (110),(101). Subtracting gives an orthogonal basis (110),(01−1)

simultaneity-relativity_(tag) Simultaneity in relativity

use orthogonal basis continuation

in 1,𝑛, the orthogonal complement of a dim =𝑛 space-like subspace is a dim =1 time-like subspace

  • (span(𝑣,𝑣′)≃ℝ2 space-like <==> there exists a time-like 𝑀 that is simultaneously orthogonal to 𝑣,𝑣′)

  • (span(𝑣,𝑣′)≃ℝ1,1 not space-like <==> there does not exist a time-like 𝑀 that is simultaneously orthogonal to space-like 𝑣,𝑣′)

Intuition: Different space-like subspaces 𝑆,𝑆′ cannot be calculated using compatible time calculation methods or the time-like orthogonal complements of 𝑆,𝑆′ are not the same

use ℝ1,𝑛 orthogonal decomposition

𝑣=𝑣0+𝑣

⟚𝑣,𝑀⟩=𝑣0𝑀0−⟚𝑣,𝑀⟩

  • ⟚𝑣⟩2,⟚𝑀⟩2≥0

Categorical discussion of sign(𝑣0𝑀0). The sign of the product of time components of the inner product determines the sign of the inner product

sign(𝑣0𝑀0)=sign(𝑣0𝑀0−⟚𝑣,𝑀⟩)=sign(⟚𝑣,𝑀⟩)
  • ⟚𝑣⟩2,⟚𝑀⟩2≀0

Categorical discussion of sign(⟚𝑣,𝑀⟩). The sign of the product of space components of the inner product determines the sign of the inner product

sign(−⟚𝑣,𝑀⟩)=sign(𝑣0𝑀0−⟚𝑣,𝑀⟩)=sign(⟚𝑣,𝑀⟩)

in Euclidean, we have #link(<quadratic-form-inequality-Euclidean>)[inner product inequality] |⟚𝑣,𝑀⟩|2≀|𝑣||𝑀| ==> #link(<triangle-inequality-Euclidean>)[triangle inequality] |𝑣+𝑀|≀|𝑣|+|𝑀|

in signature 𝑝,𝑞 quadratic form, this is generally not true

Derive the 𝑝,𝑞 quadratic form #link(<tensor-induced-quadratic-form>)[derived] to alternating second-order linear

⟚𝑣∧𝑀⟩2= det (⟚𝑣⟩2⟚𝑣,𝑀⟩𝑀𝑣⟚𝑀⟩2)=⟚𝑣⟩2⟚𝑀⟩2−⟚𝑣,𝑀⟩2

quadratic-form-inequality-Minkowski_(tag) Inner product inequality

in ℝ1,𝑛, let 𝑣,𝑀 not co-linear, so dim(span(𝑣,𝑀))=2

ℝ1,𝑛 quadratic form restricted to span(𝑣,𝑀), signature

  • 1,1 ==> ⟚𝑣∧𝑀⟩2=⟚𝑣⟩2⟚𝑀⟩2−⟚𝑣,𝑀⟩2<0 ==> ⟚𝑣⟩2⟚𝑀⟩2<⟚𝑣,𝑀⟩2
  • 0,2 ==> ⟚𝑣∧𝑀⟩2=⟚𝑣⟩2⟚𝑀⟩2−⟚𝑣,𝑀⟩2>0 ==> ⟚𝑣⟩2⟚𝑀⟩2>⟚𝑣,𝑀⟩2

Proof

dim(span(𝑣,𝑀))=2 ==> dim(⋀2 span(𝑣,𝑀))=(22)=1

span(𝑣,𝑀) quadratic form derived to ⋀2span(𝑣,𝑀)

signature

  • 1,1 of span(𝑣,𝑀) ==> (−1) of ⋀2span(𝑣,𝑀)

    Proof

    1,1 of span(𝑣,𝑀) orthogonal basis 𝑒0,𝑒1, 𝑒02=1,𝑒12=−1 ==> ⋀2span(𝑣,𝑀) orthogonal basis 𝑒0∧𝑒1, (𝑒0∧𝑒1)2=𝑒02⋅𝑒12=−1

    ==> ⟚𝑣∧𝑀⟩2<0, i.e. inner product inequality

  • 0,2 of span(𝑣,𝑀) ==> (+1) of ⋀2span(𝑣,𝑀)

    ==> ⟚𝑣∧𝑀⟩2>0

triangel-inequality-Minkowski_(tag) Triangle inequality

⟚𝑣+𝑀⟩2=⟚𝑣⟩2+2⟚𝑣,𝑀⟩+⟚𝑀⟩2

  • 2 time

⟚𝑣⟩2>0, |𝑣|≔(⟚𝑣⟩2)12

  • ⟚𝑣,𝑀⟩>0 ==> |𝑣+𝑀|>|𝑣|+|𝑀|
  • ⟚𝑣,𝑀⟩<0 ==> ⟚𝑣+𝑀⟩2<(|𝑣|−|𝑀|)2
  • 1 time, 1 null

⟚𝑀⟩2=0 ==> ⟚𝑣+𝑀⟩2=⟚𝑣⟩2+2⟚𝑣,𝑀⟩

  • ⟚𝑣,𝑀⟩>0 ==> ⟚𝑣+𝑀⟩2>⟚𝑣⟩2
  • ⟚𝑣,𝑀⟩<0 ==> ⟚𝑣+𝑀⟩2<⟚𝑣⟩2

Proof of 2 time-like

⟚𝑣⟩2,⟚𝑀⟩2>0

|𝑣|≔(⟚𝑣⟩2)12

  • ⟚𝑣,𝑀⟩>0

⟚𝑣+𝑀⟩2>0

use #link(<quadratic-form-inequality-Minkowski>)[] ⟚𝑣⟩2⟚𝑀⟩2−⟚𝑣,𝑀⟩2=⟚𝑣∧𝑀⟩2<0

==> |𝑣||𝑀|<⟚𝑣,𝑀⟩

==>

⟚𝑣+𝑀⟩2>⟚𝑣⟩2+2|𝑣||𝑀|+⟚𝑀⟩2=(|𝑣|+|𝑀|)2

==>

|𝑣+𝑀|>|𝑣|+|𝑀|
  • ⟚𝑣,𝑀⟩<0

⟚𝑣,𝑀⟩<0

==> −|𝑣||𝑀|>⟚𝑣,𝑀⟩

==>

⟚𝑣+𝑀⟩2<⟚𝑣⟩2−2|𝑣||𝑀|+⟚𝑀⟩2=(|𝑣|−|𝑀|)2

sign ⟚𝑣+𝑀⟩2 is uncertain

Example let 𝑣=(10). let 𝑀 past time-like

  • 𝑀=(−10)⟹⟚𝑣+𝑀⟩2=0

  • 𝑀=(−112)⟹⟚𝑣+𝑀⟩2=−14

  • 𝑀=(−120)⟹⟚𝑣+𝑀⟩2=14

Euclidean space can already discuss different convergence directions e.g. whether the sequence 𝑥𝑛|𝑥𝑛| converges to 𝕊𝑛−1. Spiral-like things do not converge in direction space

Euclidean space converges to a point in all 𝕊𝑛−1 directions <==> converges to a point uniformly in all directions, by compactness of 𝕊𝑛−1,ℝℙ𝑛−1

Minkowski space direction space ℚ1,𝑛(±1) is non compact. Although we have not yet defined the net of ℚ1,𝑛(±1)

The #link(<net>)[] of Minkowski space needs to be sufficiently far from the light cone ⟚𝑣⟩2=0

let ℍ𝕪𝑛(time/space)≔{𝑥∈ℝ1,𝑛:𝑥2=±1}

For convergent timelike directions, they can be separated

  • Future: 𝑣∈ℍ𝕪𝑛(time,future)={𝑥∈ℝ1,𝑛:𝑥2=1,𝑥0>0}
  • Past: 𝑣∈ℍ𝕪𝑛(time,past)={𝑥∈ℝ1,𝑛:𝑥2=1,𝑥0<0}
  • Mixed: ℍ𝕪𝑛(time) quotient away the two leaves ±𝑣, becoming a projective space type direction space

in ℝ1,1

let ℍ𝕪≔ℍ𝕪1(time,future)={(𝑡,𝑥)∈ℝ1,1:𝑡2−𝑥2=1,𝑡>0}

hyperbolic-complex_(tag) Hyperbolic complex number. cf. #link(<split-complex-number>)[]

(𝑥,𝑊)≃𝑥+𝑊 i  split =𝑥𝟙+𝑊 i split

  • 𝟙⋅ i  split = i  split ⋅𝟙= i split
  • i split 2=𝟙
  • (𝑥1+𝑊1 i split)⋅(𝑥2+𝑊2 i split) expand according to the distributive law

hyperbolic-exp_(tag)

exph 𝑧≔∑𝑛∈ℕ1𝑛!𝑧𝑛

use binomial

  • exph (𝑧+𝑀)=(exph 𝑧)(exph 𝑀)

  • exph(𝑡+ i  split 𝑥)=exph(𝑡)exph(i split 𝑥)

  • exph (ϕ i split)= cosh ϕ+(sinh ϕ) i  split ∈ℍ𝕪, ϕ∈ℝ. by cosh 2− sinh 2=1

    polor-coordinate-hyperbolic_(tag)

    Hyperbolic polar coordinates 𝑣=|𝑣|exph(ϕ i split), |𝑣|=(𝑣𝑣∗)12=⟚𝑣⟩212, ϕ∈ℝ. ϕ can come from ℍ𝕪 geodesic length parameter. Also known as hyperbolic angle hyperbolic-angle_(tag)

    Polar coordinates are the decomposition of distance and direction

    |𝑣| is not the geodesic length of ℍ𝕪, but the length of 𝑣∈ℝ1,1

hyperbolic-isom_(tag)

group isomorphism (compare with the case of complex numbers)

  • ℝ
  • ℍ𝕪
  • U (1,ℂsplit)
  • SO(1,1)

exph ((ϕ+𝜓)isplit)=exph(ϕ i split)exph(𝜓 i split)

ϕ⇝ sinh ϕ=12(𝑒ϕ−𝑒−ϕ) monotonically increasing

Solving the quadratic equation 𝑥=12(𝑒ϕ−1𝑒ϕ)⟺(𝑒ϕ)2−2𝑥𝑒ϕ−1 yields the inverse mapping

ϕ= sinh−1(𝑥)= log (𝑥2+(𝑥2+1)12)

inverse argh :ℍ𝕪→ℝ

argh(𝑡+𝑥 i split)= log (𝑥2+(𝑥2+1)12)

Question Similar to how ℂ uses stereographic projection and tan−1, ℂsplit uses #link(<stereographic-projective-hyperbolic>)[hyperbolic projection] and tanh−1 to handle hyperbolic angles or geodesic length mapping argh

The geodesic coordinates of ℍ𝕪 are exph(i split ϕ),ϕ∈ℝ

Notation conflict. Geodesic coordinates are also usually denoted as exp, but not defined using i,isplit algebra

Geodesic coordinates are Riemman isomorphic or Euclidean isomorphic

𝐎⊂ℍ𝕪 compact <==> 1i split  logh 𝐎⊂ℝ compact

Hyperbolic polar coordinates ℝ1,1(time,future)≃ℝ(≥0)×ℍ𝕪

ℝ(≥0)×ℝ⟶ℂsplit⟶ℝ1,1(𝑟,ϕ)⟿𝑟exph(ϕ i split)⟿𝑟(cosh ϕ, sinh ϕ)

net structure of 0∈ℝ1,1

Distance 𝑟=|𝑧|, direction space ℍ𝕪 or its projection ℍ𝕪ℙ, geodesic length ϕ are all SO(1,1) invariant. SO(1,1) is the isometry group of ℍ𝕪

Define (time,future) #link(<net>)[net] far away from the light cone ⟚𝑣⟩2=0

[0,𝑟]×[ϕ−𝑅,ϕ+𝑅]. 𝑅 as the geodesic sphere radius

or product net struct of distance space ℝ≥0 and direction space ℍ𝕪

Limit method

  • 𝑟→0 distance continuous
  • 𝑅→0 direction continuous

in ℝ1,1, time-like and space-like are basically symmetric, so space like net is similar

𝑓:ℝ1,1→ℝ1,1 ((time,future),(time,future)) continuous at 𝑓(0)=0 :=

in hyperbolic polar coordinates

∀𝜀,Ε>0∃𝛿,Δ>0∀𝑟<𝛿,𝑅<Δ(|𝑓|<𝜀)∧(|argh (𝑓)|<Ε)

Generalized to higher dimensions

The tangent space of the quadratic manifold ℚ𝑝,𝑞(±1) can be defined as the (affine) subspace orthogonal to the radial direction

The definition of geodesics of the quadric surface ℚ𝑝,𝑞(±1) does not require manifold techniques, only use geodesic as secant line of the cross-section span by (radial + tangent) + embedded ℍ𝕪 and its geodesic length. Question Is there a better and more intuitive definition?

ℍ𝕪𝑛(time)=ℚ1,𝑛(1) type

ℍ𝕪𝑛(space)=ℚ1,𝑛(−1) type

geodesic-of-quadratic-manifold_(tag) ℍ𝕪𝑛(time) geodesic

let 𝑣∈ℍ𝕪𝑛(time)=ℚ1,𝑛(1)={𝑥02−(𝑥12+⋯+𝑥𝑛2)=1}

Orthogonal complement space 𝑣⟂≃ℝ𝑛, 𝑛 dimensional spacelike

Affine space 𝑣+𝑣⟂ as tangent space of ℍ𝕪𝑛(time)

let 𝑀∈𝑣⟂, |𝑀|=1

span(𝑣,𝑀) is a two-dimensional subspace, signature 1,1

span(𝑣,𝑀)≃ℝ1,1, intersecting with ℍ𝕪𝑛(time) to get an embedded ℍ𝕪

Obtain the geodesic of base point 𝑣 in the direction 𝑀

ϕ⇝𝑣cosh(ϕ)+𝑀sinh(ϕ)

ℍ𝕪𝑛(time) geodesic sphere

𝔹(𝑣,𝑅)={𝑣 cosh(ϕ)+𝑀 sinh(ϕ)∈ℍ𝕪𝑛(time):𝑀∈𝑣⟂,|𝑀|=1,ϕ≀𝑅}

where 𝑣⟂≃ℝ𝑛,{|𝑀|=1}≃𝕊𝑛−1

(time,future)-like net struct of ℝ1,𝑛

Hyperbolic polar coordinates as the product net struct of distance space ℝ≥0 and direction space ℍ𝕪𝑛(time)

[0,𝑟]×𝔹(𝑣,𝑅)

Limit method: 𝑟→0, 𝑅→0. or distance continuous + direction continuous

𝑓:ℝ1,𝑛→ℝ1,𝑛 (time,future),(time,future) continuous at 𝑓(0)=0 :=

in hyperbolic polar coordinates (time,future)

∀𝜀,Ε>0∃𝛿,Δ>0∀𝑟<𝛿,𝑅<Δ(|𝑓|<𝜀)∧(|argh (𝑓)|<Ε)

let 𝑣∈ℍ𝕪𝑛(space)=ℚ1,𝑛(−1)={𝑥02−(𝑥12+⋯+𝑥𝑛2)=−1}

Orthogonal complement space 𝑣⟂≃ℝ1,𝑛−1

Affine space 𝑣+𝑣⟂ as tangent space of ℍ𝕪𝑛(space)

let 𝑀∈𝑣⟂, |𝑀|=1

  • 𝑀 timelike

span(𝑣,𝑀) signature 1,1

span(𝑣,𝑀)≃ℝ1,1 intersects with ℍ𝕪𝑛(space) to obtain an embedded ℍ𝕪

Obtain the geodesic line with base point 𝑣 and direction 𝑀

ϕ⇝𝑀cosh(ϕ)+𝑣sinh(ϕ)
  • 𝑀 spacelike

span(𝑣,𝑀) signature 0,2

span(𝑣,𝑀)≃ℝ2 intersects with ℍ𝕪𝑛(space) to obtain an embedded 𝕊

Obtain the geodesic line with base point 𝑣 and direction 𝑀

ϕ⇝𝑀cos(ϕ)+𝑣sin(ϕ)

ℍ𝕪𝑛(space) is not a Euclidean type metric manifold, so the concept of geodesic ball needs to be modified

spacelike direction space ℍ𝕪𝑛(space)'s geodesic coordinates 𝑣⟂≃ℝ1,𝑛−1, based on dimension induction, using ℝ1,𝑛−1's net struct, obtain ℍ𝕪𝑛(space)'s local net struct

Since the net is a product type decomposition, it will probably decompose into multiple one-dimensional radii as we induct, which is called multi-radius-geodesic-ball_(tag) . Will the order of decomposition affect it?

Then try to define the space-like net struct of ℝ1,𝑛 using hyperbolic polar coordinates i.e. the product net struct of distance and direction

Then we can define 𝑓:ℝ1,𝑛→ℝ1,𝑛 (space,space)-like continuous at 𝑓(0)=0, or simply spacelike continuous

The case of (𝑝,𝑞) signature should be similar

The timelike net and spacelike net of ℝ1,𝑛 are not equivalent

𝑓:ℝ1,𝑛→ℝ1,𝑛 Minkowski continuity is defined as timelike continuous and spacelike continuous

Minkowski homeomorphic is defined as 𝑓,𝑓−1 are both Minkowski continuous

all 𝑓∈SO(1,𝑛) are continuous and homeomorphic

Lin(ℝ1,𝑛→ℝ1,𝑛) General linear functions may not be Minkowski continuous

Geodesic coordinates or hyperbolic polar coordinates are locally Minkowski homeomorphic or locally Euclidean homeomorphic by definition

ℍ𝕪𝑛(time) is a Riemman manifold, const negative curvature

ℍ𝕪𝑛(space) is a Lorentz manifold, const positive curvature

ℍ𝕪𝑛(space) alias de Sitter space

hyperbolic-cosine-formula_(tag) Hyperbolic cosine formula

let 𝑣,𝑀∈ℍ𝕪

let 𝑣= exph (ϕ i split),𝑀= exph (𝜓 i split)

⟚𝑣,𝑀⟩=Re(𝑣⋅𝑀∗)=Re(exph ((ϕ−𝜓) i split))=cosh(ϕ−𝜓)

let 𝑣,𝑀 future time-like. |𝑣|≔(⟚𝑣⟩2)12

𝑣|𝑣|,𝑀|𝑀|∈ℍ𝕪

⟚𝑣,𝑀⟩|𝑣||𝑀|=cosh(ϕ−𝜓)

Cosine formula

⟚𝑣+𝑀⟩2=⟚𝑣⟩2+2⟚𝑣,𝑀⟩+⟚𝑀⟩2=⟚𝑣⟩2+⟚𝑀⟩2+2|𝑣||𝑀|⟚𝑣,𝑀⟩|𝑣||𝑀|=⟚𝑣⟩2+⟚𝑀⟩2+2|𝑣||𝑀| cosh (ϕ−𝜓)

isom-top-hyperbolic-Euclidean_(tag)

ℍ𝕪 in ℂsplit =ℝ1,1 limit structure under distance ≃ geodesic distance ≃ Euclidean ℝ1

Proof

let 𝑣,𝑀∈ℍ𝕪, 𝑣= exph (ϕ i split),𝑀= exph (𝜓 i split)

⟚𝑣−𝑀⟩2=⟚𝑣⟩2+⟚𝑀⟩2−2⟚𝑣,𝑀⟩=2(1− cosh(ϕ−𝜓))≀0  by   cosh ≥1

let dist(𝑣,𝑀)≔(−⟚𝑣−𝑀⟩2)12

use cosh ϕ=1⟺ϕ=0

dist(𝑣,𝑀)=0⟺⟚𝑣−𝑀⟩2=0⟺ϕ=𝜓⟺𝑣=𝑀

use cosh ϕ=12(𝑒ϕ+𝑒−ϕ) continuity

∀𝜀>0,∃𝛿>0,∀ϕ,𝜓∈ℝ|ϕ−𝜓|<𝛿⟹dist(𝑣,𝑀)<𝜀

Generalize to ℍ𝕪𝑛⊂ℝ1,𝑛, Euclidean ℝ𝑛

Proof

use geodesic coordinates

similar to ℝ1,1, try to prove

⟚𝑣−𝑀⟩2=⟚𝑣⟩2+⟚𝑀⟩2−2⟚𝑣,𝑀⟩=2(1− cosh(|ϕ−𝜓|))≀0

where

  • ϕ,𝜓 are geodesic coordinates of 𝑣,𝑀
  • |ϕ−𝜓| is the Euclid distance in geodesic coordinates

The base point of the stereographic projection of the sphere 𝕊𝑛 is on 𝕊𝑛. More than two coordinate charts are needed to cover all of 𝕊𝑛

stereographic-projective-hyperbolic_(tag) time-like hyperboloid ℍ𝕪𝑛(time) considers stereographic projection, with two base points on the two branches of the hyperboloid respectively, and the projection forms separate singular points in the direction of the light cone

space-like hyperboloid, use space-like base points to define hyperbolic projection, and the projection coordinate chart is a lower-dimensional Minkowski space

Should the transformation function be a Minkowski continuous homeomorphism?

Perform 3d plotting for the case of ℝ1,2, and draw the light cone of the base point (note that the light cone is "vertical")

Even if the intuition of drawing may be difficult, the analytical calculation should not be difficult

exph can be generalized to ℍ′≃ℝ2,2 and 𝕆′≃ℝ4,4?