1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

The power function order in the power series โˆ‘0..โˆž๐‘Ž๐‘›๐‘ฃ๐‘› is different, introducing the asymmetry of the coefficient ๐‘Ž๐‘›, which makes it not necessarily suitable for series rearrangement? Although we will still discuss absolute convergence

One-dimensional case begins

#link(<geometric-series>)[Geometric series]

|๐‘Ž|<1โŸนโˆ‘๐‘›โˆˆโ„•๐‘Ž๐‘›=ย limย ๐‘›โ†’โˆž1โˆ’๐‘Ž๐‘›+11โˆ’๐‘Ž=11โˆ’๐‘Ž

in ๐•‚, |๐‘Ž๐‘|=|๐‘Ž||๐‘|

|๐‘Ž๐‘›๐‘ฃ๐‘›|=(|๐‘Ž๐‘›|1๐‘›|๐‘ฃ|)๐‘›

convergence-radius-1d_(tag) Radius of convergence

(cf. #link(<limsup>)[])

๐‘…โ‰”1limโ€‰sup๐‘›โ†’โˆž{|๐‘Ž๐‘›|1๐‘›}โˆˆ[0,โˆž]ย orย ย 1๐‘…โ‰”limโ€‰sup๐‘›โ†’โˆž{|๐‘Ž๐‘›|1๐‘›}

==> |๐‘Ž๐‘›|1๐‘›โ‰ค1๐‘…

absolute-convergence-analytic-1d_(tag)

|๐‘ฃ|<๐‘… ==> ๐‘Ž๐‘›๐‘ฃ๐‘› absolutely converges

Proof

use #link(<geometric-series-test>)[geometric series test] and |๐‘Ž๐‘›๐‘ฃ๐‘›|1๐‘›=|๐‘Ž๐‘›|1๐‘›|๐‘ฃ|โ‰ค|๐‘ฃ|๐‘…<1

|โˆ‘๐‘›โˆˆโ„•๐‘Ž๐‘›๐‘ฃ๐‘›|โ‰คโˆ‘๐‘›โˆˆโ„•(|๐‘ฃ|๐‘…)๐‘›=11โˆ’|๐‘ฃ|๐‘…

|๐‘ฃ|>๐‘… ==> ๐‘Ž๐‘›๐‘ฃ๐‘› absolutely diverges

Proof 1๐‘…โ‰”limโ€‰sup๐‘›โ†’โˆž{|๐‘Ž๐‘›|1๐‘›} ==> for infinite terms in ๐‘›โˆˆโ„•, |๐‘Ž๐‘›|1๐‘›โ‰ˆ1๐‘…โŸน|๐‘Ž๐‘›|1๐‘›|๐‘ฃ|>1โŸน|๐‘Ž๐‘›๐‘ฃ๐‘›|>1

uniformaly-absolutely-convergence-analytic_(tag)

use |๐‘ฃ|โ‰ค๐‘Ÿ<๐‘…. use #link(<geometric-serise-test>)[geometric series control]

in the closed ball ๐”นยฏ(๐‘Ÿ) with radius ๐‘Ÿ<๐‘…, โˆ‘๐‘Ž๐‘›๐‘ฃ๐‘› uniformly absolutely converges

Polynomial function ๐‘ฃโ‡โˆ‘๐‘›=0๐‘๐‘Ž๐‘›๐‘ฃ๐‘› is a continuous function

Function defined by power series within the radius of convergence

๐‘ฃโ‡๐‘“(๐‘ฅ+๐‘ฃ)=โˆ‘๐‘›โˆˆโ„•๐‘Ž๐‘›๐‘ฃ๐‘›, |๐‘ฃ|<๐‘…

analytic-imply-continuous_(tag)

๐‘…>0 ==> continuous

|๐‘“(๐‘ฅ+๐‘ฃ)โˆ’๐‘“(๐‘ฅ)|=|โˆ‘๐‘›=0โˆž๐‘Ž๐‘›๐‘ฃ๐‘›โˆ’๐‘Ž0|โ‰คโˆ‘๐‘›=1โˆž(|๐‘ฃ|๐‘…)๐‘›=11โˆ’|๐‘ฃ|๐‘…โˆ’1

limย ๐‘ฃโ†’011โˆ’|๐‘ฃ|๐‘…โˆ’1=0

Extending the #link(<change-base-point-polynomial>)[] of polynomials to series

change-base-point-analytic_(tag)

๐‘…>0

==> The power series after switching the base point of the power series โˆ‘๐‘Ž๐‘›๐‘ฃ๐‘› to ๐‘ฅ+ฮ”โˆˆ๐”น(๐‘ฅ,๐‘…)

๐‘“((๐‘ฅ+ฮ”)+๐‘ฃ)=โˆ‘๐‘šโˆˆโ„•(โˆ‘๐‘›=๐‘šโˆž๐‘Ž๐‘›(๐‘ฅ)(๐‘›๐‘š)ฮ”๐‘›โˆ’๐‘š)๐‘ฃ๐‘š=โˆ‘๐‘šโˆˆโ„•๐‘Ž๐‘š(๐‘ฅ+ฮ”)๐‘ฃ๐‘š

There is also a non-zero radius of convergence ๐‘…โ€ฒ>0 at ๐‘ฅ+ฮ”. (Figure) According to the triangle inequality, ๐‘…โ€ฒโ‰ฅ๐‘…โˆ’|ฮ”|

Example

  • log(1โˆ’๐‘ง)โˆผโˆ‘1๐‘›๐‘ง๐‘› ็š„ radius of convergence is 1

  • ๐‘’๐‘งโˆผโˆ‘1๐‘›!๐‘ง๐‘› ็š„ radius of convergence is โˆž

Convergence problem on the boundary

  • log(1โˆ’๐‘ฅ)โˆผโˆ‘1๐‘›๐‘ฅ๐‘› ็š„ radius of convergence is 1, at ๐‘ฅ=1 it is the harmonic series โˆ‘1๐‘›, absolutely divergent

  • โˆ‘1๐‘›2๐‘ฅ๐‘› ็š„ radius of convergence is 1, at ๐‘ฅ=1 absolutely converges to

  • โˆ‘1๐‘›2=๐œ‹26

  • Absolute convergence vs convergence: log(1โˆ’๐‘ฅ)โˆผโˆ‘1๐‘›๐‘ฅ๐‘› converges at ๐‘ฅ<1

Now consider the higher-dimensional case. ๐•‚๐‘‘โ†’๐•‚๐‘‘โ€ฒ power series

Note the |๐‘ฃ| symmetry, for example Oย (๐‘‘) of โ„๐‘‘, Uย (๐‘‘) of โ„‚๐‘‘

Generalize the polynomial function #link(<polynomial-function>)[] to the power series โˆ‘๐ด๐‘›(๐‘ฃ๐‘›)

Unlike one-dimensional, in higher dimensions, generally there is no |๐ด๐‘›(๐‘ฃ๐‘›)|=|๐ด๐‘›||๐‘ฃ|๐‘›. There isn't even a definition for |๐ด๐‘›|

linear-map-induced-norm_(tag)

let ๐ดโˆˆLin(โŠ—๐‘›๐•‚๐‘‘โ†’๐•‚๐‘‘โ€ฒ)

|๐ด| is defined as the uniform control coefficient for all directions ๐‘ฃโˆˆ๐•‚โ„™๐‘‘โˆ’1. compactness of ๐•‚โ„™๐‘‘โˆ’1 will make this definition meaningful (and cannot be directly used for general ๐‘,๐‘ž quadratic form direction space โ„š๐‘,๐‘ž(ยฑ1))

|๐ด|โ‰”sup๐‘ฃโˆˆ๐•‚โ„™๐‘‘โˆ’1|๐ด(๐‘ฃ๐‘›)|๐•‚๐‘‘โ€ฒ=sup๐‘ฃโˆˆ๐•‚๐‘‘|๐ด(๐‘ฃ๐‘›)||๐‘ฃ|๐‘›

so that (for all direction)

|๐ด(๐‘ฃ๐‘›)|โ‰ค|๐ด||๐‘ฃ|๐‘›

and

  • |๐œ†๐ด|=|๐œ†||๐ด|
  • |๐ด+๐ต|โ‰ค|๐ด|+|๐ต|

Compared to the ๐•‚1 case, the computability of the definition of ๐•‚๐‘‘ is low

convergence-radius_(tag) radius of convergence

๐‘…=1limโ€‰sup๐‘›โ†’โˆž{|๐ด๐‘›|1๐‘›}

absolute-convergence-analytic_(tag)

#link(<absolute-convergence-analytic-1d>)[same as] ๐•‚1

  • |๐‘ฃ|<๐‘… ==> ๐ด๐‘›(๐‘ฃ๐‘›) absolutely converges

  • There exists a direction ๐‘ฃ|๐‘ฃ|, forall |๐‘ฃ|>๐‘…, ๐ด๐‘›(๐‘ฃ๐‘›) is absolutely divergent

Proof (of divergence)

use #link(<linear-map-induced-norm>)[] |๐ด๐‘›|, there exists ๐‘ฃ๐‘›โˆˆ๐•‚โ„™๐‘‘โˆ’1 such that |๐ด๐‘›((๐‘ฃ๐‘›)๐‘›)|โ‰ˆ|๐ด๐‘›|

use limโ€‰sup definition, for infinitely many terms ๐‘›โˆˆโ„•, |๐ด๐‘›|1๐‘›โ‰ˆlimโ€‰sup{|๐ด๐‘›|1๐‘›}=1๐‘…

use passing to compact ๐•‚โ„™๐‘‘โˆ’1 and the subsequence of ๐‘ฃ๐‘› converges to ๐‘ฃ

==> for infinitely many terms ๐‘›โˆˆโ„•, |๐ด๐‘›((๐‘ฃ๐‘›)๐‘›)|โ‰ˆ|๐ด๐‘›(๐‘ฃ๐‘›)|

==> for infinitely many terms ๐‘›โˆˆโ„•, |๐ด๐‘›(๐‘ฃ๐‘›)|1๐‘›โ‰ˆlimโ€‰sup{|๐ด๐‘›|1๐‘›}=1๐‘…

Scale ๐‘ค|๐‘ค|โ‰”๐‘ฃโˆˆ๐•‚โ„™๐‘‘โˆ’1 to ๐‘คโˆˆ๐•‚๐‘‘

==> |๐ด๐‘›(๐‘ค๐‘›)|=|๐ด๐‘›(๐‘ฃ)||๐‘ค|๐‘›

let |๐‘ค|>๐‘…

==> for infinitely many terms ๐‘›โˆˆโ„•, |๐ด๐‘›|1๐‘›|๐‘ค|>1โŸน|๐ด๐‘›(๐‘ค๐‘›)|>1

Another point of view: for each direction ๐‘ฃโˆˆ๐•‚โ„™๐‘‘โˆ’1, consider the radius of convergence ๐‘…(๐‘ฃ) of the ๐•‚ line embedding. then let ๐‘…=inf๐‘ฃโˆˆ๐•‚โ„™๐‘‘โˆ’1๐‘…(๐‘ฃ)

Similar to one-dimensional case also have

  • #link(<uniformaly-absolutely-convergence-analytic>)[]

  • #link(<analytic-imply-continuous>)[]

  • #link(<change-base-point-analytic>)[]

for ๐‘“(๐‘ฅ+๐‘ฃ)=โˆ‘๐ด๐‘›(๐‘ฃ๐‘›), the ๐‘›-th order #link(<difference-polynomial>)[difference] gives

๐‘›!๐ด๐‘›(๐‘ฃ1โ‹ฏ๐‘ฃ๐‘›)+๐‘œ(๐‘ฃ๐‘›)

Replace ๐‘ฃ๐‘˜โ†’๐‘ก๐‘˜๐‘ฃ๐‘˜

๐‘ก1โ‹ฏ๐‘ก๐‘›๐‘›!๐ด๐‘›(๐‘ฃ1โ‹ฏ๐‘ฃ๐‘›)+๐‘œ(๐‘ก1โ‹ฏ๐‘ก๐‘›)

The power series converges uniformly and absolutely within the radius of convergence, so the limit can be exchanged

limย ๐‘ก1,โ€ฆ,๐‘ก๐‘˜โ†’01๐‘ก1โ‹ฏ๐‘ก๐‘› can recover the ๐‘›-th order monomial

differential_(tag)

๐‘›th order differential ๐‘‘๐‘›๐‘“(๐‘ฅ)โˆˆLin(โŠ™๐‘›๐•‚๐‘‘โ†’๐•‚๐‘‘โ€ฒ)

๐‘‘๐‘›๐‘“(๐‘ฅ)(๐‘ฃ1โ‹ฏ๐‘ฃ๐‘›)โ‰”๐‘›!๐ด๐‘›(๐‘ฃ1โ‹ฏ๐‘ฃ๐‘›)=limย ๐‘ก1,โ€ฆ,๐‘ก๐‘˜โ†’01๐‘ก1โ‹ฏ๐‘ก๐‘›โˆ‘๐ตโŠ‚{1,โ€ฆ,๐‘›}(โˆ’1)|๐ต|โˆ’๐‘›๐‘“(๐‘ฅ+โˆ‘๐‘โˆˆ๐ต๐‘ก๐‘๐‘ฃ๐‘)

Example

๐‘‘๐‘“(๐‘ฅ)(๐‘ฃ)=limย ๐‘กโ†’01๐‘ก(๐‘“(๐‘ฅ+๐‘ก๐‘ฃ)โˆ’๐‘“(๐‘ฅ))๐‘‘2๐‘“(๐‘ฅ)(๐‘ฃ1๐‘ฃ2)=ย limย ๐‘ก1,๐‘ก2โ†’01๐‘ก1๐‘ก2+๐‘“(๐‘ฅ+๐‘ก1๐‘ฃ1+๐‘ก2๐‘ฃ2)โˆ’๐‘“(๐‘ฅ+๐‘ก1๐‘ฃ1)โˆ’๐‘“(๐‘ฅ+๐‘ก2๐‘ฃ2)+๐‘“(๐‘ฅ)

The definition of difference and differential can be used for any function, it does not need to be a function defined by power series

polynomial-expansion_(tag) Polynomial expansion

๐‘“(๐‘ฅ+๐‘ฃ)โˆผโˆ‘1๐‘›!๐‘‘๐‘›๐‘“(๐‘ฅ)(๐‘ฃ๐‘›)

alias power series, Taylor expansion, Taylor series

polynomial-approximation_(tag) Polynomial approximation

๐‘“(๐‘ฅ+๐‘ฃ)โˆผโˆ‘๐‘›=0..๐‘1๐‘›!๐‘‘๐‘›๐‘“(๐‘ฅ)(๐‘ฃ๐‘›)+๐‘œ(๐‘ฃ๐‘)

alias Taylor expansion, Taylor approximation, Taylor polynomial

derivative_(tag) difference quotient alias derivative, directional derivative

โˆ‚๐‘“โˆ‚๐‘ฃ(๐‘ฅ)โ‰”๐‘‘๐‘“(๐‘ฅ)(๐‘ฃ)=ย limย 1๐‘ก(๐‘“(๐‘ฅ+๐‘ก๐‘ฃ)โˆ’๐‘“(๐‘ฅ))

Successive difference and difference quotient ๐‘‘2๐‘“(๐‘ฅ)(๐‘ฃ1๐‘ฃ2)=

๐‘‘2๐‘“(๐‘ฅ)(๐‘ฃ1๐‘ฃ2)=limย ๐‘ก21๐‘ก2โˆ‘๐ต2โŠ‚{2}ย limย ๐‘ก11๐‘ก1โˆ‘๐ต1โŠ‚{1}(โˆ’1)|๐ต1|+|๐ต2|โˆ’2๐‘“(๐‘ฅ+โ€ฆ)=limย ๐‘ก21๐‘ก2(โˆ‚๐‘“โˆ‚๐‘ฃ1(๐‘ฅ+๐‘ก2๐‘ฃ2)โˆ’โˆ‚๐‘“โˆ‚๐‘ฃ1(๐‘ฅ))=โˆ‚2๐‘“โˆ‚๐‘ฃ2โˆ‚๐‘ฃ1(๐‘ฅ)

#link(<successive-difference>)[Successive difference] does not depend on the order + limit exchange ==> โˆ‚2๐‘“โˆ‚๐‘ฃ1โˆ‚๐‘ฃ2=โˆ‚2๐‘“โˆ‚๐‘ฃ2โˆ‚๐‘ฃ1

successive-derivative_(tag) Successive difference quotient

โˆ‚๐‘›๐‘“โˆ‚๐‘ฃ1โ‹ฏโˆ‚๐‘ฃ๐‘›(๐‘ฅ)โ‰”limย ๐‘ก๐‘›โ†’01๐‘ก๐‘›(โˆ‚๐‘“โˆ‚๐‘ฃ1โ‹ฏโˆ‚๐‘ฃ๐‘›โˆ’1(๐‘ฅ+๐‘ก๐‘›๐‘ฃ๐‘›)โˆ’โˆ‚๐‘“โˆ‚๐‘ฃ1โ‹ฏโˆ‚๐‘ฃ๐‘›โˆ’1(๐‘ฅ))=๐‘‘๐‘›๐‘“(๐‘ฅ)(๐‘ฃ1โ‹ฏ๐‘ฃ๐‘›)

==> Directional derivative representation of power series ๐‘“(๐‘ฅ+๐‘ฃ)=โˆ‘1๐‘›!โˆ‚๐‘›๐‘“โˆ‚๐‘ฃ๐‘›(๐‘ฅ)

The concept of successive difference quotient uses the subtraction of tangent vectors at different points, implicitly using the concept of connection

partial-derivative_(tag) Partial derivative

Use coordinates. let ๐‘’๐‘˜ be the basis of ๐•‚๐‘‘. so ๐‘ก๐‘˜๐‘’๐‘˜ โŸท coordinate ๐‘˜ component ๐‘ก๐‘˜

โˆ‚๐‘“โˆ‚๐‘ฅ๐‘˜(๐‘ฅ)โ‰”โˆ‚๐‘“โˆ‚๐‘’๐‘˜(๐‘ฅ)=ย limย ๐‘ก๐‘˜โ†’01๐‘ก๐‘˜(๐‘“(๐‘ฅ+๐‘ก๐‘˜๐‘’๐‘˜)โˆ’๐‘“(๐‘ฅ))

and so on

let ๐‘ฃ=๐‘Ž1๐‘’1+โ‹ฏ+๐‘Ž๐‘‘๐‘’๐‘‘. use #link(<successive-derivative>)[], #link(<partial-derivative>)[]

==> Partial derivative representation of power series (also cf. #link(<multi-combination>)[])

๐‘“(๐‘ฅ+๐‘ฃ)=โˆ‘๐‘›1๐‘›!โˆ‘๐‘–1โ‹ฏ๐‘–๐‘›=1,โ€ฆ,๐‘‘โˆ‚๐‘›๐‘“โˆ‚๐‘ฅ๐‘–1โ‹ฏโˆ‚๐‘ฅ๐‘–๐‘›(๐‘ฅ)๐‘Ž๐‘–1โ‹ฏ๐‘Ž๐‘–๐‘›=โˆ‘๐‘›1๐‘›!โˆ‘๐‘˜1+โ‹ฏ+๐‘˜๐‘‘=๐‘›(๐‘›๐‘˜1โ‹ฏ๐‘˜๐‘‘)โˆ‚๐‘›๐‘“โˆ‚๐‘ฅ1๐‘˜1โ‹ฏโˆ‚๐‘ฅ๐‘‘๐‘˜๐‘‘(๐‘ฅ)๐‘Ž1๐‘˜1โ‹ฏ๐‘Ž๐‘‘๐‘˜๐‘‘

when domain = ๐•‚1, ๐‘“(๐‘ฅ+๐‘ฃ)=โˆ‘๐‘‘๐‘›๐‘“๐‘‘๐‘ฅ๐‘›(๐‘ฅ)๐‘ฃ๐‘›

define โˆ‚๐‘ฅ๐‘˜โ‰”๐‘’๐‘˜ and dual basis ๐‘‘๐‘ฅ๐‘˜ with ๐‘‘๐‘ฅ๐‘˜(๐‘Ž1โˆ‚๐‘ฅ1+โ‹ฏ+๐‘Ž๐‘‘โˆ‚๐‘ฅ๐‘‘)=๐‘Ž๐‘˜

==> The partial derivative representation of the differential as coefficients of a symmetric tensor โ€“ base expansion

๐‘‘๐‘›๐‘“(๐‘ฅ)=โˆ‘๐‘˜1+โ‹ฏ+๐‘˜๐‘‘=๐‘›(๐‘›๐‘˜1โ‹ฏ๐‘˜๐‘‘)โˆ‚๐‘›๐‘“โˆ‚๐‘ฅ1๐‘˜1โ‹ฏโˆ‚๐‘ฅ๐‘‘๐‘˜๐‘‘(๐‘ฅ)๐‘‘๐‘ฅ1๐‘˜1โ‹ฏ๐‘‘๐‘ฅ๐‘‘๐‘˜๐‘‘

when domain = ๐•‚1

  • ๐‘‘๐‘›๐‘“(๐‘ฅ)=๐‘‘๐‘›๐‘“๐‘‘๐‘ฅ๐‘›(๐‘ฅ)๐‘‘๐‘ฅ๐‘›

  • ๐‘‘๐‘›๐‘“(๐‘ฅ)(1)=๐‘‘๐‘›๐‘“๐‘‘๐‘ฅ๐‘›(๐‘ฅ)

Example

let ๐‘“(๐‘ฅ)=11โˆ’๐‘ฅ

๐‘‘๐‘›๐‘“(๐‘ฅ)(1)=๐‘‘๐‘›๐‘“๐‘‘๐‘ฅ๐‘›(๐‘ฅ)=๐‘›!(11โˆ’๐‘ฅ)๐‘›+1

๐‘‘๐‘›๐‘“๐‘‘๐‘ฅ๐‘›(0)=๐‘›!

11โˆ’๐‘ฃ=๐‘“(0+๐‘ฃ)โˆผโˆ‘1๐‘›!๐‘‘๐‘›๐‘“๐‘‘๐‘ฅ๐‘›(0)๐‘ฃ๐‘›=โˆ‘๐‘ฃ๐‘›, or

11โˆ’๐‘ฅโˆผโˆ‘๐‘ฅ๐‘›

if use range space coordinates ๐‘“=(๐‘“1โ‹ฎ๐‘“๐‘‘โ€ฒ) then the first-order differential ๐‘‘๐‘“ is represented as the Jacobi matrix Jacobi-matrix_(tag)

๐‘‘๐‘“=(โˆ‚๐‘“1โˆ‚๐‘ฅ1โ€ฆโˆ‚๐‘“1โˆ‚๐‘ฅ๐‘‘โ‹ฎโ‹ฎโˆ‚๐‘“๐‘‘โ€ฒโˆ‚๐‘ฅ1โ€ฆโˆ‚๐‘“๐‘‘โ€ฒโˆ‚๐‘ฅ๐‘‘)

differential-function_(tag) Differential function

๐•‚๐‘‘โŸถLin(โŠ™๐‘›๐•‚๐‘‘โ†’๐•‚๐‘‘โ€ฒ)๐‘ฅโŸฟ๐‘‘๐‘›๐‘“(๐‘ฅ)

Taking the range Lin(โŠ™๐‘›๐•‚๐‘‘โ†’๐•‚๐‘‘โ€ฒ) as a linear space, and using the power norm, it can be expanded as a power series

successive-differential_(tag)

isomorphism

Lin(โŠ™๐‘š๐•‚๐‘‘โ†’ย Lin(โŠ™๐‘›๐•‚๐‘‘โ†’๐•‚๐‘‘โ€ฒ))โŸถLin(โŠ™๐‘š+๐‘›๐•‚๐‘‘โ†’๐•‚๐‘‘โ€ฒ)๐‘‘๐‘š(๐‘‘๐‘›๐‘“)โŸฟ๐‘‘๐‘š+๐‘›๐‘“

with

๐‘‘๐‘š(๐‘‘๐‘›๐‘“)(๐‘ฃ1โ‹ฏ๐‘ฃ๐‘š)=(๐‘ฃ๐‘š+1โ‹ฏ๐‘ฃ๐‘š+๐‘›โ‡๐‘‘๐‘š+๐‘›๐‘“(๐‘ฃ1โ‹ฏ๐‘ฃ๐‘š๐‘ฃ๐‘š+1๐‘ฃ๐‘š+๐‘›))

same norm |๐‘‘๐‘š(๐‘‘๐‘›๐‘“)|=|๐‘‘๐‘š+๐‘›๐‘“|

same convergence radius (#link(<exponential-root-of-power-function>)[use] limย ๐‘šโ†’โˆž(๐‘š+๐‘›)1๐‘š=1)

Proof (draft) Commutativity of derivatives ๐‘‘๐‘š,(๐‘ฃ1โ‹ฏ๐‘ฃ๐‘š) and ๐‘‘๐‘›,(๐‘ฃ๐‘š+1โ‹ฏ๐‘ฃ๐‘š+๐‘›). norm estimation |๐‘‘๐‘š+๐‘›๐‘“(๐‘ฃ1โ‹ฏ๐‘ฃ๐‘š+๐‘›)|โ‰ค|๐‘‘๐‘š+๐‘›๐‘“||๐‘ฃ1|โ‹ฏ|๐‘ฃ๐‘š+๐‘›|

Abbreviation ๐‘‘๐‘š(๐‘‘๐‘›๐‘“)=๐‘‘๐‘š+๐‘›๐‘“ Although the notation conflicts

==> Power series of the differential function ๐‘‘๐‘›๐‘“(๐‘ฅ+๐‘ฃ)=โˆ‘๐‘š1๐‘š!๐‘‘๐‘š+๐‘›๐‘“(๐‘ฅ)(๐‘ฃ๐‘›)

anti-derivative_(tag)

  • ๐•‚โ†’๐•‚

    use ๐‘‘๐‘‘๐‘ฃ๐‘ฃ๐‘›=๐‘›๐‘ฃ๐‘›โˆ’1

    ==> (๐‘‘๐‘‘๐‘ฃ)โˆ’1โˆ‘๐‘›โ‰ฅ0๐‘Ž๐‘›๐‘ฃ๐‘›โ†’โˆ‘๐‘›โ‰ฅ0๐‘Ž๐‘›๐‘›๐‘ฃ๐‘›+1. The zero-order term is uncertain

  • ๐•‚๐‘‘โ†’๐•‚๐‘‘โ€ฒ โ€ฆ

mean-value-theorem-analytic-1d_(tag) Differential mean value theorem

  • Intermediate value ver.

    โˆƒ๐‘โˆˆ(๐‘Ž,๐‘),๐‘“(๐‘)โˆ’๐‘“(๐‘Ž)=(๐‘โˆ’๐‘Ž)๐‘“โ€ฒ(๐‘)
  • compact uniform linear control ver.

    |๐‘“(๐‘)โˆ’๐‘“(๐‘Ž)|โ‰ค|๐‘โˆ’๐‘Ž|sup๐‘โˆˆ[๐‘Ž,๐‘]|๐‘“โ€ฒ(๐‘)|

Proof

use ๐‘“(๐‘ฅ)โˆ’๐‘“(๐‘)โˆ’๐‘“(๐‘Ž)๐‘โˆ’๐‘Ž reduce to

๐‘“(๐‘Ž)=๐‘“(๐‘)=0โŸนโˆƒ๐‘โˆˆ(๐‘Ž,๐‘),๐‘“โ€ฒ(๐‘)=0
  • ๐‘“โ‰ก0
  • โˆƒ๐‘Žโ€ฒ,๐‘โ€ฒโˆˆ(๐‘Ž,๐‘),๐‘Žโ€ฒ<๐‘โ€ฒ,ย signย ๐‘“(๐‘Žโ€ฒ)โ‰ ย signย ๐‘“(๐‘โ€ฒ)

==> โˆƒ๐‘โˆˆ(๐‘Žโ€ฒ,๐‘โ€ฒ),๐‘“โ€ฒ(๐‘)=0 Proof by #link(<mean-value-theorem-continuous>)[intermediate value theorem]

The intermediate value theorem uses the complete order of โ„

The order of โ„โ‰ฅ0 used in the absolute value estimate may not have enough strength to obtain the mean value theorem of derivatives

fundamental-theorem-of-calculus_(tag) Fundamental Theorem of Calculus

๐‘“(๐‘)โˆ’๐‘“(๐‘Ž)=โˆซ๐‘Ž๐‘๐‘“โ€ฒ(๐‘ฅ)๐‘‘๐‘ฅ

Mean Value Theorem compact uniform linear control ver. + compact partition uniform approximation

mean-value-theorem-analytic_(tag) Mean Value Theorem for โ„๐‘‘โ†’โ„๐‘‘โ€ฒ. Reduce to the case of โ„ using the embedded line ๐‘กโ†’๐‘ฅ+๐‘ก๐‘ฃ

  • First order
๐‘“(๐‘ฅ+๐‘ฃ)=๐‘“(๐‘ฅ)+โˆซ01๐‘‘๐‘ก ๐‘“โ€ฒ(๐‘ฅ+๐‘ก๐‘ฃ)๐‘ฃ

by Fundamental Theorem of Calculus and #link(<chain-rule-1d>)[] and ๐‘‘๐‘‘๐‘ก(๐‘ฅ+๐‘ก๐‘ฃ)=๐‘ฃ

remainder estimation, uniform linear control

๐‘“(๐‘ฅ+๐‘ฃ)โˆ’๐‘“(๐‘ฅ)=๐‘œ(1)ย orย ๐‘‚(๐‘ฃ)โ‰ค|๐‘ฃ|sup๐‘กโˆˆ[0,1]|๐‘“โ€ฒ(๐‘ฅ+๐‘ก๐‘ฃ)|
  • Higher order
๐‘“(๐‘ฅ+๐‘ฃ)=โˆ‘๐‘›=0๐‘š1๐‘›!๐‘‘๐‘›๐‘“(๐‘ฅ)(๐‘ฃ๐‘›)+โˆซ01๐‘‘๐‘ก(1โˆ’๐‘ก)๐‘š๐‘š!๐‘‘๐‘š+1๐‘“(๐‘ฅ+๐‘ก๐‘ฃ)(๐‘ฃ๐‘š+1)

by integration by parts

1๐‘š!๐‘‘๐‘š๐‘“(๐‘ฅ+๐‘ก๐‘ฃ)๐‘ฃ๐‘š=โˆ’((1โˆ’๐‘ก)๐‘š๐‘š!๐‘‘๐‘š๐‘“(๐‘ฅ+๐‘ก๐‘ฃ)๐‘ฃ๐‘š)|01=โˆ’โˆซ01๐‘‘๐‘ก๐‘‘๐‘‘๐‘ก((1โˆ’๐‘ก)๐‘š๐‘š!๐‘‘๐‘š๐‘“(๐‘ฅ+๐‘ก๐‘ฃ)๐‘ฃ๐‘š)=โˆซ01๐‘‘๐‘ก((1โˆ’๐‘ก)๐‘šโˆ’1(๐‘šโˆ’1)!๐‘‘๐‘š๐‘“(๐‘ฅ+๐‘ก๐‘ฃ)๐‘ฃ๐‘š)โˆ’โˆซ01๐‘‘๐‘ก((1โˆ’๐‘ก)๐‘š๐‘š!๐‘‘๐‘š+1๐‘“(๐‘ฅ+๐‘ก๐‘ฃ)๐‘ฃ๐‘š+1)

remainder estimation, uniform ๐‘š+1 order power control

๐‘“(๐‘ฅ+๐‘ฃ)โˆ’โˆ‘๐‘›=0๐‘š1๐‘›!๐‘‘๐‘›๐‘“(๐‘ฅ)(๐‘ฃ๐‘›)=๐‘œ(๐‘ฃ๐‘š)ย orย ๐‘‚(๐‘ฃ๐‘š+1)โ‰ค1(๐‘š+1)!|๐‘ฃ|๐‘š+1sup๐‘กโˆˆ[0,1]|๐‘‘๐‘š+1๐‘“(๐‘ฅ+๐‘ก๐‘ฃ)|

let power series โˆ‘๐ด๐‘›(๐‘ฃ๐‘›)

convergence-domain_(tag) domain of convergence := {๐‘ฃโˆˆ๐•‚๐‘‘:ย limย ๐‘โ†’โˆžโˆ‘๐‘›=0๐‘๐ด๐‘›(๐‘ฃ๐‘›)ย converge}

Calculating the coefficients after switching the base point of the power series uses the exchange of summation

for polynomials, the summation is finite, the order of summation is exchanged, so switching the base point is well-defined #link(<change-base-point-polynomial>)[]

However, the limit of infinite summation, if not absolutely convergent, is not always compatible with changing the order of summation #link(<series-rearrangement>)[]

Switching the base point of a power series may change the domain of convergence

Example

11โˆ’๐‘ง=โˆ‘๐‘ง๐‘›=ย limย ๐‘›โ†’โˆž1โˆ’๐‘ง๐‘›+11โˆ’๐‘ง

with ๐‘ง๐‘›+1=|๐‘ง|๐‘›+1๐‘’iย (๐‘›+1)๐œƒ

The domain of convergence is |๐‘ง|<1

Switching the base point causes the domain of convergence to change

  • 12โˆˆ{|๐‘ง|<1}, ๐‘ค=๐‘งโˆ’12, 11โˆ’๐‘ง=112โˆ’(๐‘งโˆ’12)=21โˆ’2๐‘ค

    domain of convergence {๐‘ง=๐‘ค+12:|๐‘ค|<12}, open ball of radius 12

  • โˆ’12โˆˆ{|๐‘ง|<1} ๐‘ค=๐‘ง+12, 11โˆ’๐‘ง=132โˆ’(๐‘ง+12)=231โˆ’23๐‘ค

    domain of convergence {๐‘ง=๐‘คโˆ’12:|๐‘ค|<32}, open ball of radius 32

Continuously switching the base point can "change" the value to which it converges

Example

  • logย (1โˆ’๐‘ง)โˆผโˆ‘1๐‘›๐‘ง๐‘›

let ฮ”1,โ€ฆ,ฮ”๐‘šโˆˆโ„‚ with ฮ”1+โ‹ฏ+ฮ”๐‘š=0

let โˆ‘1๐‘›๐‘ง๐‘› successively switch base points ฮ”1,ฮ”1+ฮ”2,โ€ฆ,ฮ”1+โ‹ฏ+ฮ”๐‘šโˆˆโ„‚, and finally return to 0

if each displacement ฮ”๐‘–+1 is within the domain of convergence of the base point ฮ”1+โ‹ฏ+ฮ”๐‘–, and the power series limit is used

then the final power series is 2๐‘˜๐œ‹ย iย +โˆ‘1๐‘›๐‘ง๐‘›, where ๐‘˜ is the number of turns the path formed by ฮ”1,โ€ฆ,ฮ”๐‘š makes around 0

  • log(๐‘ง). Rotating ๐‘˜ turns around 1 yields 2๐‘˜๐œ‹ย iย +log(๐‘ง)

  • ๐‘ง12=๐‘’12ย logย ๐‘ง

Rotating ๐‘˜ turns around 1 yields (โˆ’1)๐‘˜๐‘ง12, by ๐‘’12โ‹…2๐‘˜๐œ‹ย i=(โˆ’1)๐‘˜

analytic-continuation_(tag)

  • Well-defined continuation region: not affected by switching base points

  • Maximal continuation region: cannot be well-definedly continued anymore

Example

  • log(1โˆ’๐‘ง)โˆผโˆ‘1๐‘›๐‘ง๐‘› radius of convergence 1

Cannot be well-definedly continued to โ„‚โˆ–{1}. by rotating ๐‘˜ turns around 0 yields 2๐‘˜๐œ‹ย iย +log(1โˆ’๐‘ง)

The maximal well-defined continuation region is โ„‚โˆ–{๐‘ฅ+ย iย 0:๐‘ฅโ‰คโˆ’1}

  • 11โˆ’๐‘งโˆผโˆ‘๐‘ง๐‘› radius of convergence 1

Can be well-definedly continued to โ„‚โˆ–{1}, coinciding with 11โˆ’๐‘ง defined by โ„‚ division

๐‘‘๐‘งlog(1โˆ’๐‘ง)=11โˆ’๐‘ง, or ๐‘‘๐‘งlog(๐‘ง)=1๐‘ง

  • 1๐‘ฅ,๐‘ฅโˆˆ(โˆ’โˆž,0) and 1๐‘ฅ,๐‘ฅโˆˆ(0,+โˆž) are already maximal continuations

The maximal continuation of 1๐‘ง is โ„‚โˆ–0

The power series coefficients of 1๐‘ง contain complex numbers, unlike 1๐‘ฅ which only contains real numbers

analytic-function_(tag) Analytic function := Power series with non-zero radius of convergence at any point + maximal analytic continuation

analytic-isomorphism_(tag) Analytic isomorphism := ๐‘“:๐ทโ†”๐ทโ€ฒ

  • Analytic function
  • โˆ€๐‘ฅโˆˆ๐ท,๐‘‘๐‘“(๐‘ฅ)โˆˆGL(๐•‚๐‘‘)
  • same for ๐‘“โˆ’1

Example

  • ๐ดโˆˆGL(๐‘‘,๐•‚) is an analytic isomorphism

  • ๐‘“(๐‘ฅ)=13๐‘ฅ3+๐‘ฅ

๐‘‘๐‘“๐‘‘๐‘ฅ=๐‘ฅ2+1>0 ==> ๐‘‘๐‘“โˆ’1๐‘‘๐‘ฆ>0, ๐‘“,๐‘“โˆ’1 monotonically increasing ==> ๐‘“ is โ„โ†’โ„ analytic isomorphism

๐‘“(๐‘ง)=13๐‘ง3+๐‘ง=0, ๐‘‘๐‘“๐‘‘๐‘ง=๐‘ง2+1 in โ„‚ has solutions ยฑย i ==> ๐‘‘๐‘“(ยฑย i)โˆ‰ย GL ==> ๐‘“ is not โ„‚โ†’โ„‚ analytic isomorphism

  • ๐‘“(๐‘ฅ)=๐‘’๐‘ฅ with ๐‘‘๐‘“๐‘‘๐‘ฅ=๐‘’๐‘ฅ>0 is โ„โ†’โ„>0 analytic isomorphism
๐‘“(๐‘ง)=๐‘’๐‘ง with ๐‘‘๐‘“๐‘‘๐‘ง=๐‘’๐‘งโ‰ 0 is a local analytic isomorphism, but not a โ„‚โ†’โ„‚โˆ–{0} analytic isomorphism. Non-injective: ๐‘’0=๐‘’iย 2๐œ‹=1

Attempt to define distance on the power series space. Inspired by

|๐ด๐‘›(๐‘ฃ๐‘›)|1๐‘›โ‰ค|๐ด๐‘›|1๐‘›|๐‘ฃ|

1๐‘…=limโ€‰sup{|๐ด๐‘›|1๐‘›}

Triangle inequality |๐ด+๐ต|1๐‘›โ‰ค|๐ด|1๐‘›+|๐ต|1๐‘› Proof by both sides ๐‘› power, binomial expansion

power-series-space_(tag)

Power series space

โจ๐‘›=1โˆžLin(โŠ™๐‘›๐•‚๐‘‘โ†’๐•‚๐‘‘โ€ฒ)

#link(<net>)[] (note: |๐ด| is #link(<linear-map-induced-norm>)[])

๐”น(๐ด,๐œ€)โ‰”{๐ต:โˆ€๐‘›โˆˆโ„•โ‰ฅ1,|๐ด๐‘›โˆ’๐ต๐‘›|1๐‘›<๐œ€}

(or |๐ด๐‘›โˆ’๐ต๐‘›|<๐œ€๐‘›)

Distance

dist(๐ด,๐ต)=sup๐‘›โ‰ฅ1|๐ด๐‘›โˆ’๐ต๐‘›|1๐‘›

as uniform control for forall ๐‘›โ‰ฅ1

Power series space is a distance space and complete. Proof by inheriting from ||1๐‘› of forall ๐‘›โ‰ฅ1

dist is not a norm, eg. |๐œ†๐ด๐‘›|1๐‘›=|๐œ†|1๐‘›|๐ด๐‘›|1๐‘›

The closeness of the radius of convergence ๐‘…๐ดโ‰ˆ๐‘…๐ต

|๐ต|1๐‘›โ‰ค|๐ด|1๐‘›+|๐ดโˆ’๐ต|1๐‘›

|๐ด|1๐‘›โ‰ค|๐ต|1๐‘›+|๐ดโˆ’๐ต|1๐‘›

==> |๐ดโˆ’๐ต|1๐‘›โ‰ฅ||๐ด|1๐‘›โˆ’|๐ต|1๐‘›|

|๐ด๐‘›โˆ’๐ต๐‘›|1๐‘›<๐œ€

==> ||๐ด๐‘›|1๐‘›โˆ’|๐ต๐‘›|1๐‘›|<๐œ€

==> |๐ด๐‘›|1๐‘›โˆ’๐œ€โ‰ค|๐ต๐‘›|1๐‘›โ‰ค|๐ด๐‘›|1๐‘›+๐œ€

==> limโ€‰sup{|๐ต๐‘›|1๐‘›}โ‰ˆlimโ€‰sup{|๐ด๐‘›|1๐‘›}

==> ๐‘…๐ดโ‰ˆ๐‘…๐ต

The closeness of the converged values

|โˆ‘๐‘›โ‰ฅ1๐ด๐‘›(๐‘ฃ๐‘›)โˆ’โˆ‘๐‘›โ‰ฅ1๐ต๐‘›(๐‘ฃ๐‘›)|โ‰คโˆ‘๐‘›โ‰ฅ1|๐ด๐‘›โˆ’๐ต๐‘›||๐‘ฃ|๐‘›โ‰คโˆ‘๐‘›โ‰ฅ1๐œ€๐‘›|๐‘ฃ|๐‘›=11โˆ’๐œ€|๐‘ฃ|โˆ’1โ†’0

Sobolev-space_(tag) for Sobolev anayltic space, try use almost-everywhere analytic + โˆซ|1๐‘›!๐‘‘๐‘›๐‘“|1๐‘› as the control function to approximate the objective function โˆซ|1๐‘›!ฯ•๐‘›โˆ’1๐‘›!๐‘‘๐‘›๐‘”|1๐‘›โ‰คโˆซ|1๐‘›!๐‘‘๐‘›๐‘“|1๐‘›, where ฯ•๐‘› is the weak-differential_(tag) of ฯ•. (note: |๐ด| is #link(<linear-map-induced-norm>)[]) Or just use the almost-everywhere analytic space with analytic integral norm restrictions, or perform Cauchy net completion of this space with integral norm

Weaker net control

let ๐‘Ÿ<๐‘…๐ด

use data ๐ด,๐œ€ and new data ๐‘Ÿ

{๐ต:โˆ‘๐‘›โ‰ฅ1|๐ด๐‘›โˆ’๐ต๐‘›|๐‘Ÿ๐‘›<๐œ€}

Example including the truncated polynomial approximation of ๐ด, i.e. Taylor polynomial by โˆ‘๐‘›=0..โˆž|๐ด๐‘›|๐‘Ÿ๐‘›<โˆžโŸนย limย ๐‘โ†’โˆžโˆ‘๐‘›=๐‘..โˆž=0

For symmetry considerations, the definition of analytic should not depend on the specific power series expansion base point

Comparison of power series distance control at different base points

For base point ๐‘ฅ, power series ๐ด,๐ต with dist(๐ด,๐ต)=๐œ€

Simultaneously switch the base point to ๐‘ฅ+ฮ”

Coefficient estimation

|๐ด๐‘š(๐‘ฅ+ฮ”)โˆ’๐ต๐‘š(๐‘ฅ+ฮ”)|=|โˆ‘๐‘›=๐‘šโ‰ฅ1โˆž(๐ด๐‘›(๐‘ฅ)โˆ’๐ต๐‘›(๐‘ฅ))(๐‘›๐‘š,๐‘›โˆ’๐‘š)ฮ”๐‘›โˆ’๐‘š|โ‰คโˆ‘๐‘›=๐‘šโ‰ฅ1โˆž๐œ€๐‘›(๐‘›๐‘š,๐‘›โˆ’๐‘š)|ฮ”|๐‘›โˆ’๐‘š=๐œ€๐‘šโˆ‘๐‘=0โˆž(๐‘+๐‘š๐‘š,๐‘)|๐œ€ฮ”|๐‘(useย ๐‘=๐‘›โˆ’๐‘š)=๐œ€๐‘š1(1โˆ’|๐œ€ฮ”|)๐‘š+1

==>

|๐ด๐‘š(๐‘ฅ+ฮ”)โˆ’๐ต๐‘š(๐‘ฅ+ฮ”)|1๐‘šโ‰ค๐œ€1(1โˆ’|๐œ€ฮ”|)1+1๐‘š

1(1โˆ’|๐œ€ฮ”|)1+1๐‘šโ‰ค1(1โˆ’|๐œ€ฮ”|)2 decreases with respect to ๐œ€

==>

๐œ€=dist(๐ด,๐ต)(๐‘ฅ)โ†’0โŸนdist(๐ด,๐ต)(๐‘ฅ+ฮ”)โ†’0

let ๐‘Ÿ<๐‘…(๐‘ฅ)

==>

limย dist(๐ด,๐ต)(๐‘ฅ)โ†’0sup|ฮ”|โ‰ค๐‘Ÿ{โˆ‘|๐ด๐‘›(๐‘ฅ+ฮ”)โˆ’๐ต๐‘›(๐‘ฅ+ฮ”)||๐‘ฃ|๐‘›}=0

Continue, finitely many times

let ๐‘ฅ๐‘–=๐‘ฅ+ฮ”1+โ‹ฏ+ฮ”๐‘–

==> The power series distance at one point ๐‘ฅ uniformly controls the power series distance of the region โ‹ƒ๐‘–=1๐‘๐”นยฏ(๐‘ฅ๐‘–,๐‘Ÿ๐‘–)

Although this still cannot maintain the well-definedness of analytic continuation, e.g. log(๐‘ง)

analytic-space_(tag)

Mesh of analytic space

let ๐‘“ be analytic, with domain ๐ท๐‘“

The #link(<net>)[mesh] of ๐‘“

  • let ๐œ€>0

  • let ๐ทโŠ‚๐ท๐‘“ and ๐ท compact and transitively connected, i.e. for ๐‘Ž,๐‘โˆˆ๐ท, there exists a construction โ‹ƒ๐‘–=1๐‘๐”นยฏ(๐‘ฅ๐‘–,๐‘Ÿ๐‘–) connecting ๐‘ฅ1=๐‘Ž,๐‘ฅ๐‘=๐‘

  • forall analytic ๐‘” with property
    ๐‘” domain of convergence contains ๐ท, sup๐‘ฅโˆˆ๐ทdist(1๐‘›!๐‘‘๐‘›๐‘“,1๐‘›!๐‘‘๐‘›๐‘”)(๐‘ฅ)<๐œ€

Net's approximation method: ๐ทโ†’๐ท๐‘“ and ๐œ€โ†’0

when verifying the property of the net "โˆ€๐ตโ€ฒ,๐ตโ€ณโˆˆย Net,โˆƒ๐ตโˆˆย Net,๐ตโŠ‚๐ตโ€ฒโˆฉ๐ตโ€ณ"

if ๐ทโ€ฒ,๐ทโ€ณ are separated, it is necessary to construct a transitively connected ๐ท containing ๐ทโ€ฒ,๐ทโ€ณ

A possible construction method: connect ๐ทโ€ฒ,๐ทโ€ณ with a compact polyline, such that the bounded ball of dist(1๐‘›!๐‘‘๐‘›๐‘“,1๐‘›!๐‘‘๐‘›๐‘”)(๐‘ฅ)<๐œ€ covers every point on the path, use finite covering

Power series space and analytic space deal with ๐‘›โ‰ฅ1 order differential coefficients

The ๐‘›=0 order differential coefficient has basically no effect

The modification of the ๐‘›=0 coefficient of a base point simultaneously acts on other base points, and does not affect the ๐‘›โ‰ฅ1 coefficient, ๐ด๐‘š(๐‘ฅ+ฮ”)=โˆ‘๐‘›=๐‘šโ‰ฅ1โˆž๐ด๐‘›(๐‘ฅ)(๐‘›๐‘š,๐‘›โˆ’๐‘š)ฮ”๐‘›โˆ’๐‘š

compare the net of analytic space vs the net of continuous function space (should be something compact open topology?)

in analytic space and its net

  • inverse-op-continous-in-analytic-space_(tag) ๐‘“โ‰ˆ๐‘” ==> ๐‘“โˆ’1โ‰ˆ๐‘”โˆ’1

  • compose-op-continous-in-analytic-space_(tag) ๐‘“1โ‰ˆ๐‘“2 and ๐‘”1โ‰ˆ๐‘”2 ==> ๐‘“1โˆ˜๐‘”1โ‰ˆ๐‘“2โˆ˜๐‘”2

Or rather, the โˆ’1,โˆ˜ operators are continuous functions of analytic space

same for linear ๐‘“+๐‘”, multiplication ๐‘“๐‘”, inversion 1๐‘“?

Example

  • Affine linear

๐‘“(๐‘ฅ+๐‘ฃ)=๐ด0+๐ด1๐‘ฃ

radius of convergence โˆž

The first-order term of the power series of any base point is const ๐ด1

A uniform distance can be defined in the affine linear space |๐ด1โˆ’๐ต1|=sup๐‘ฃโˆˆ๐•‚โ„™๐‘‘โˆ’1|(๐ด1โˆ’๐ต1)(๐‘ฃ)|

  • Polynomial mapping

๐‘“(๐‘ฅ+๐‘ฃ)=๐ด0+๐ด1๐‘ฃ+โ‹ฏ+๐ด๐‘›๐‘ฃ๐‘›

radius of convergence โˆž

A uniform distance cannot be defined in the polynomial function space

connected-analytic_(tag) in analytic space, 1๐‘ฅ,๐‘ฅโˆˆ(โˆ’โˆž,0) and 1๐‘ฅ,๐‘ฅโˆˆ(0,+โˆž) are in different connected components?

The properties of singularities within connected components are invariant under analytic homeomorphism

homotopy-analytic_(tag) analytic #link(<homotopy>)[homotopy]