1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

Binary relation := Propositional function ๐‘:๐ดร—๐ตโ†’{0,1} or a subset of ๐ดร—๐ต

when ๐ดร—๐ต it's called ๐ด,๐ต is independent

๐‘›-ary relation is similar

order_(tag)

Propositional function <:๐ด2โ†’{0,1} is an order := โˆ€๐‘Ž,๐‘,๐‘โˆˆ๐ด

  • Transitive: (๐‘Ž<๐‘)โˆง(๐‘<๐‘)โŸน๐‘Ž<๐‘
  • Acyclic: ยฌ((๐‘Ž<๐‘)โˆง(๐‘<๐‘Ž))

Can also use the equivalent โ‰ค version

Example

  • Subset inclusion โŠ‚ or inclusion and not equal to โŠŠ is an order

    image modified from wiki media about partial order

  • <,โ‰ค of โ„•,โ„ค,โ„š,โ„
  • Tree diagram

order-comparable_(tag) ๐‘Ž,๐‘Žโ€ฒโˆˆ๐ด comparable := (๐‘Žโ‰ค๐‘Žโ€ฒ)โˆจ(๐‘Žโ€ฒโ‰ค๐‘Ž)

comparable-component_(tag) ๐ด๐‘–โŠ‚๐ด is comparable-component := โˆ€๐‘Žโˆˆ๐ด,(โˆƒ๐‘Ž๐‘–โˆˆ๐ด๐‘–,ย comparable(๐‘Ž,๐‘Ž๐‘–)โŸน๐‘Žโˆˆ๐ด๐‘–)

Partial order can be decomposed into comparable-components that are not comparable to each other. Imagine two tree diagrams that have no relation

linear-order_(tag) ๐ด linear order

โˆ€๐‘Ž,๐‘Žโ€ฒโˆˆ๐ด,comparable(๐‘Ž,๐‘Žโ€ฒ)

Intuitively, a linear order has no branches, also called a "chain"

maximal-linear-order_(tag) Maximal linear order chain

let ๐ตโŠ‚๐ด with < linear order. ๐ต is maximal-linear-order := the following definitions are equivalent

  • โˆ€๐‘Žโˆˆ๐ด,(โˆ€๐‘โˆˆ๐ต,ย comparable(๐‘Ž,๐‘)โŸน๐‘Žโˆˆ๐ต)
  • โˆ€ย linear-orderย ๐ถโŠ‚๐ด,(๐ตโŠ‚๐ถโŸน๐ต=๐ถ)

It cannot be used to decompose partial orders. Two maximal linear order chains can have intersecting parts

maximal-linear-order-exists_(tag) maximal-linear-order chain alaways exists

related to #link(<axiom-of-choice>)[]?