analytic-struct-product
_(tag) 积空间
不对称性: ==> 没有
只好使用 和偏微分
something like
mulitplication-analytic
_(tag)
with
收敛半径至少是
(联系于 Cauchy product. 尝试寻找更好的证明方法)
恢复微分中的 ,
==> Leibniz-law-1d
_(tag)
, or
, or
收集 重张量
let 得到 多项式
==>
==> Leibniz-law
_(tag)
mulitplication-inverse-analytic
_(tag)
let , ,
use and
or 直接计算
let , , use 乘法
:
:
==> , use induction
differential-of-multiplication-inverse
_(tag) use Leibniz law
, or
in particular,
收敛半径
try 归纳证明
为完成归纳, use with
compose-op-analytic
_(tag)
let ,
with
where 复合后的 的所有可能来源
with
从而只能来自 for
(cf. #link(<multi-combination>)[]
)
==>
. 写为微分 chain-rule-1d
_(tag)
, or
where
, 写为微分就是 chain-rule
_(tag)
一般的写为微分的形式
-
-
-
in
将 提取
置于
得到 (this is not )
inverse-analytic
_(tag)
let , ,
let
- 一阶微分计算. , use 复合
by
- 高阶微分计算. use 归纳 for
只来自
and ==>
==> (省略 )
==>
由于可能不收敛, 无法直接作为 函数
但是可以扩充到
使得
- 逆函数的收敛半径非零 (p.77 of ref-4)
Reference
==>
use (indeed )
构造 (几乎) 的非零收敛半径的幂级数控制
if by induction, for , , ,
where with
其逆是 with . to prove. 收敛半径非零 to prove
use case of
to get , use
==>
,
to get , , use
to get , use
now prove 幂级数 的逆幂级数 收敛半径非零
let ,
为了求 的逆映射 , 解方程
==> 的二次方程, 有两个根
use , 选取正确的根
use 收敛半径 ==> 非零收敛半径
use ==> 非零收敛半径
虽然这里无法给出确切的收敛半径, 但是对于纯微分方法, 压缩不动点原理证明逆函数的方法也不能给出确切的极大局部可逆区域
differential-of-inverse
_(tag)
or
implicit-function
_(tag)
use #link(<analytic-struct-product>)[]
and
==> ,
微分和微分函数的计算不需要预先有级数
-
有限点处收敛半径为零的 函数
接上
-
处处 但处处收敛半径 的函数
wiki: Non-analytic_smooth_function
Since the series converges for forall , this function is easily seen to be of class , by a standard inductive application of the Weierstrass M-test to demonstrate uniform convergence of each series of derivatives.
We now show that is not analytic at any dyadic rational multiple of , that is, at any with and .
Since the sum of the first q terms is analytic, we need only consider , the sum of the terms with .
For forall orders of derivation with , and we have
where we used the fact that for forall , and we bounded the first sum from below by the term with .
As a consequence, at any such ,
Since the set of analyticity of a function is an open set, and since dyadic rationals are dense, we conclude that , and hence , is nowhere analytic in
-
阶可微但不 阶可微: 使用 Weierstrass 函数的各阶积分
-
阶可微但 阶不连续可微 (虽然 阶可微蕴含 阶连续可微): 使用 , 阶可微但不 阶连续可微, 使用其各阶积分
-
连续同胚但不微分同胚不解析同胚.
-
微分同胚但不解析同胚. 光滑但处处不解析函数中取 的部分得到局部微分同胚. 局部到全局 by 用 得到 的解析同胚