1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

compact's original inspiration: The intersection of closed interval nets of โ„ is non-empty #link(<closed-interval-net-theorem>)[]

0 is a #link(<limit-point>)[limit point] of Tโ„ of (0,1). The #link(<net>)[net] (0,1๐‘›) seems to converge to 0

But โ‹‚(0,1๐‘›)=โˆ…

Compare the multiplicative inverse's โ‹‚(๐‘›,โˆž)=โˆ…

โ„ does not have โˆž corresponding to the possible limit 0

Compare โ‹‚[0,1๐‘›)={0}

let T๐‘‹ #link(<topology>)[topological space]. let ๐ดโŠ‚๐‘‹

compact_(tag) ๐ด compact := forall B net of ๐ด, โ‹‚๐ตโˆˆย B๐ตฬ„โ‰ โˆ…

Meaning: The elements of any #link(<net>)[net] B have a common limit point set under the topology T๐‘‹. Or, after T๐‘‹ closure, the net B converges to a non-empty set or the intersection is non-empty, instead of converging to the empty set (e.g., Euclidean โ„๐‘‘ converges to the empty set or converges to infinity, but there are many other complex situations)

Any net can replenish all finite intersections and maintain #link(<net-same-limit>)[the same limit], so for compact, the equivalent description is

T๐‘‹ compact <==>

โˆ€๐ด1,โ€ฆ,๐ด๐‘›โˆˆย A,๐ดฬ„1โˆฉโ‹ฏโˆฉ๐ดฬ„๐‘›โ‰ โˆ…โŸนโ‹‚๐ดโˆˆย A๐ดฬ„โ‰ โˆ…

logically equivalent to

โ‹‚๐ดโˆˆย A๐ดฬ„=โˆ…โŸนโˆƒ๐ด1,โ€ฆ,๐ด๐‘›โˆˆย A,๐ดฬ„1โˆฉโ‹ฏโˆฉ๐ดฬ„๐‘›=โˆ…

logically equivalent to compact-finite-open-cover_(tag)

โ‹ƒ๐ดโˆˆย A๐ดฬŠ=๐‘‹โŸนโˆƒ๐ด1,โ€ฆ,๐ด๐‘›โˆˆย A,๐ดฬŠ1โˆฉโ‹ฏโˆฉ๐ดฬŠ๐‘›=๐‘‹

compact-subset_(tag) ๐‘†โŠ‚๐‘‹ := #link(<topology-subspace>)[] T๐‘† compact

recall #link(<closed-in-subspace>)[], closed(๐ด,T๐‘†)=๐‘†โˆฉclosed(๐ด,T๐‘‹), denoted as ๐‘†โˆฉ๐ดฬ„

compact-subset logically equivalent to

โˆ€๐ด1,โ€ฆ,๐ด๐‘›โˆˆย A,๐‘†โˆฉ๐ดฬ„1โˆฉโ‹ฏโˆฉ๐ดฬ„๐‘›โ‰ โˆ…โŸน๐‘†โˆฉโ‹‚๐ดโˆˆย A๐ดฬ„โ‰ โˆ…

logically equivalent to

๐‘†โˆฉโ‹‚๐ดโˆˆย A๐ดฬ„=โˆ…โŸนโˆƒ๐ด1,โ€ฆ,๐ด๐‘›โˆˆย A,๐‘†โˆฉ๐ดฬ„1โˆฉโ‹ฏโˆฉ๐ดฬ„๐‘›=โˆ…

logically equivalent to compact-subset-finite-open-cover_(tag)

๐‘†โŠ‚โ‹ƒ๐ดโˆˆย A๐ดฬŠโŸนโˆƒ๐ด1,โ€ฆ,๐ด๐‘›โˆˆย A,๐‘†โŠ‚๐ดฬŠ1โˆฉโ‹ฏโˆฉ๐ดฬŠ๐‘›

compact-subset is closed under finite unions. this is easy to proof

closed-set-in-compact-space-is-compact_(tag) T๐‘‹ compact and ๐‘† closed ==> ๐‘† compact

Proof

๐‘† closed in T๐‘‹ ==> โˆ€๐ดโŠ‚๐‘†,closed(๐ด,T๐‘†)=closed(๐ด,T๐‘‹). by #link(<closed-in-subspace>)[]

Reusing T๐‘‹ compact to get โ‹‚๐ดโˆˆย A๐ดฬ„โ‰ โˆ… and thus get ๐‘† compact

Hausdorff space := โˆ€๐‘ฅ,๐‘ฅโ€ฒโˆˆ๐‘‹,๐‘ฅโ‰ ๐‘ฅโ€ฒโŸนโˆƒ๐ต๐‘ฅ,๐ต๐‘ฅโ€ฒโˆˆย T๐‘‹,๐ต๐‘ฅโˆฉ๐ต๐‘ฅโ€ฒ=โˆ…

Hausdorff + compact ==> closed. At this time, compact is closed for any intersection

continous-preserve-compact_(tag) let ๐‘“:๐‘‹โ†’๐‘Œ. ๐‘“(๐‘‹) is compact-subset of T๐‘Œ

Proof

Using topology-subspace, just need to handle the case ๐‘“(๐‘‹)=๐‘Œ

let A be net of ๐‘Œ. to prove โ‹‚๐ดโˆˆย A๐ดฬ„โ‰ 0

{๐‘“โˆ’1(๐ด):๐ดโˆˆย A} is net of ๐‘‹

T๐‘‹ compact ==> โ‹‚๐ดโˆˆย A๐‘“โˆ’1(๐ด)ยฏโ‰ 0

The inverse image of a continuous function preserves closed ๐‘“โˆ’1(๐ด)ยฏ=๐‘“โˆ’1(๐ดฬ„). Use the #link(<inverse-image>)[property] of inverse images on โˆฉ

โˆ…โ‰ ๐‘“(โ‹‚๐ดโˆˆย A๐‘“โˆ’1(๐ดฬ„))โŠ‚โ‹‚๐ดโˆˆย A๐‘“(๐‘“โˆ’1(๐ดฬ„))

๐‘“:๐‘‹โ†’๐‘Œ surjective ==> ๐‘“(๐‘“โˆ’1(๐ดฬ„))=๐ดฬ„

so โ‹‚๐ดโˆˆย A๐ดฬ„โ‰ โˆ…, so T๐‘Œ compact

Contrapositive: Under a continuous function, the inverse image of non-compact is non-compact

quotient-topology-preserve-compact_(tag) For #link(<quotient-topology>)[] ๐œ‹:๐‘‹โ‡๐‘‹โˆผ, source space ๐‘‹ compact ==> quotient space ๐‘‹โˆผ compact. because the quotient map ๐œ‹ is continuous, it preserves compact

product-topology-preserve-compact_(tag) #link(<product-topology>)[] preserves compact

Proof

Take a net #๐ด of โˆ๐‘–โˆˆ๐ผ๐‘‹๐‘–, need to prove โ‹‚๐ดโˆˆย A๐ดฬ„โ‰ โˆ… or โˆƒ๐‘ฅโˆˆโˆ๐‘–โˆˆ๐ผ๐‘‹๐‘–,๐‘ฅโˆˆโ‹‚๐ดโˆˆย A๐ดฬ„

{๐‘“๐‘–(๐ด):๐ดโˆˆย A} is net of ๐‘‹๐‘–

According to ๐‘‹๐‘– compact โ‹‚๐ดโˆˆย A๐‘“๐‘–(๐ด)ยฏโ‰ โˆ…

==> โˆ€ย indexย ๐‘–โˆˆ๐ผ,โˆƒ๐‘ฅ๐‘–โˆˆโ‹‚๐ดโˆˆย A๐‘“๐‘–(๐ด)ยฏ

According to the definition of closure ๐‘“๐‘–(๐ด)ยฏ

โˆ€๐ต๐‘ฅ๐‘–โˆˆย Bย ๐‘–(๐‘ฅ๐‘–)๐‘“๐‘–(๐ด)โˆฉ๐ต๐‘ฅ๐‘–โ‰ โˆ…

==>

โˆ…โ‰ (๐‘“๐‘–ย restrictย toย ๐ด)โˆ’1(๐‘“๐‘–(๐ด)โˆฉ๐ต๐‘ฅ๐‘–)=๐ดโˆฉ๐‘“๐‘–โˆ’1(๐ต๐‘ฅ๐‘–)

Defined by the point-net system of product topology and the definition of closure ๐ดฬ„

==> โˆƒ๐‘ฅโˆˆโˆ๐‘–โˆˆ๐ผ๐‘‹๐‘–,๐‘ฅโˆˆโ‹‚๐ดโˆˆย A๐ดฬ„