1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

separable ODE in 1 dimension

๐‘‘๐‘ฅ๐‘‘๐‘ก=๐‘“(๐‘ก)๐‘”(๐‘ฅ)โŸถ1๐‘”(๐‘ฅ)๐‘‘๐‘ฅ=๐‘“(๐‘ก)๐‘‘๐‘กโŸถ๐‘ฅ=๐บโˆ’1(๐น(๐‘ก))

where ๐บ=โˆซ1๐‘”(๐‘ฅ)๐‘‘๐‘ฅ,๐น=โˆซ๐‘“(๐‘ก)๐‘‘๐‘ก, initial value undetermined

Example

  • ๐‘“(๐‘ก)=๐‘Ž,๐‘”(๐‘ฅ)=๐‘ฅ. ๐‘ฅ(๐‘ก)=๐‘ฅ(0)exp(๐‘Ž๐‘ก)
  • ๐‘“(๐‘ก)=1,๐‘”(๐‘ฅ)=๐‘ฅ2. ๐‘ฅ(๐‘ก)=11๐‘ฅ(0)โˆ’๐‘ก

exponential-of-vector-field_(tag) Question

let ๐‘ˆ open in โ„๐‘›

vector-field is analytic function ๐‘ฃ:๐‘ˆโ†’โ„๐‘›

The exponential-of-vector-field (expย ๐‘ฃ)(๐‘ฅ) generated by the vector field ๐‘ฃ should be invariant

โˆ‚๐‘ฃ(๐‘ฅ)(expย ๐‘ฃ)(๐‘ฅ)=๐‘ฃ(๐‘“(๐‘ฅ))

Taylor series of vector field

(expย ๐‘ฃ)(๐‘ฅ)=๐‘ฅ+๐‘ฃ(๐‘ฅ)+12!โˆ‚๐‘ฃ(๐‘ฅ)๐‘ฃ(๐‘ฅ)+13!โˆ‚๐‘ฃ(๐‘ฅ)(โˆ‚๐‘ฃ(๐‘ฅ)๐‘ฃ(๐‘ฅ))+โ‹ฏ=๐‘ฅ+โˆ‘๐‘›=0โˆž1(๐‘›+1)!(โˆ‚๐‘ฃ(๐‘ฅ))๐‘›๐‘ฃ(๐‘ฅ)

๐‘›+1 polynomial like (โˆ‚๐œ†๐‘ฃ(๐‘ฅ))๐‘›๐œ†๐‘ฃ(๐‘ฅ)=๐œ†๐‘›+1(โˆ‚๐‘ฃ(๐‘ฅ))๐‘›๐‘ฃ(๐‘ฅ)

Example

compare to the result from separable ODE in 1 dimension

  • ๐‘ฃ(๐‘ฅ)=๐ด(๐‘ฅ),๐ดโˆˆgl(๐‘‘,๐•‚)

compare ๐‘ฅฬ‡=๐ด๐‘ฅ, expect (โˆ‘0..โˆž1๐‘›!(๐ด๐‘ก)๐‘›)(๐‘ฅ) with ๐‘ก=1

๐‘‘๐‘ฃ(๐‘ฅ)=๐ด, ๐‘›โ‰ฅ2โŸน๐‘‘๐‘˜๐‘ฃ(๐‘ฅ)=0

โˆ‚๐‘ฃ(๐‘ฅ)๐‘ฃ(๐‘ฅ)=๐ด(๐‘ฃ(๐‘ฅ))=๐ด2(๐‘ฅ)

(โˆ‚๐‘ฃ(๐‘ฅ))2๐‘ฃ(๐‘ฅ)=๐‘‘(๐ด2(๐‘ฅ))(๐‘ฃ(๐‘ฅ))=๐ด2(๐‘ฃ(๐‘ฅ))=๐ด3(๐‘ฅ)

โ€ฆ

(โˆ‚๐‘ฃ(๐‘ฅ))๐‘›๐‘ฃ(๐‘ฅ)=๐ด๐‘›+1(๐‘ฅ)

๐‘“(๐‘ฅ)=(๐Ÿ™+๐ด+12!๐ด2+โ‹ฏ)(๐‘ฅ)=(โˆ‘1๐‘›!๐ด๐‘›)(๐‘ฅ)=(expย ๐ด)(๐‘ฅ)

๐‘‘๐‘“(๐‘ฅ)๐‘ฃ(๐‘ฅ)=(expย ๐ด)(๐ด(๐‘ฅ))=๐ด(exp(๐ด)(๐‘ฅ))=๐‘ฃ(๐‘“(๐‘ฅ))

Example harmonic-oscillator_(tag)

make harmonic-oscillator ๐‘ฅฬˆ=โˆ“๐œ”2๐‘ฅ first order

(๐‘‘๐‘‘๐‘ก๐‘‘๐‘‘๐‘ก)(๐‘ฅ๐‘ฃ)=(1โˆ“๐œ”2)(๐‘ฅ๐‘ฃ)

with the case of trigonometric

expย ๐‘ก(1โˆ’๐œ”2)=(cosย ๐œ”๐‘ก1๐œ”ย sinย ๐œ”๐‘กโˆ’๐œ”ย sinย ๐œ”๐‘กcosย ๐œ”๐‘ก)

so

๐‘ฅ(๐‘ก)=๐‘ฅ0ย cosย ๐œ”๐‘ก+๐‘ฃ0๐œ”ย sinย ๐œ”๐‘ก

or written in the form of complex number and exponential

๐‘ฅ(๐‘ก)=12(๐‘ฅ0โˆ’ย iย ๐‘ฃ0๐œ”)๐‘’iย ๐œ”๐‘ก+12(๐‘ฅ0+ย iย ๐‘ฃ0๐œ”)๐‘’โˆ’ย iย ๐œ”๐‘กโ‰•๐‘Ž(๐œ”,ย i)๐‘’iย ๐œ”๐‘ก+๐‘Ž(๐œ”,โˆ’i)๐‘’โˆ’ย iย ๐œ”๐‘ก

similar for the case of hyperbolic

The characteristic polynomial equation of harmonic-oscillator is ๐œ‰2ยฑ๐œ”2=0 or ๐œ‰2=ยฑ๐œ”2. We are interested in the trigonometric case ๐œ‰2+๐œ”2=0 or ๐œ‰=๐œ”ย iย ๐œ”, its prototype is ๐œ‰2=ยฑ1 or ๐œ‰2=ยฑ๐‘–

In the case where the harmonic oscillator ๐‘ฅ is a real value, for the complex exponential form, in order to remain in โ„, when ๐‘ฅ0,๐‘ฃ0โˆˆโ„, the coefficients in front of ๐‘’ยฑย iย ๐œ”๐‘ก are complex conjugates of each other ๐‘ฅ0ยฑ๐‘ฃ0iย ๐œ”

  • โ„โ†’โ„, ๐‘ฃ(๐‘ฅ)=๐‘ฅ2

compare ๐‘ฅฬ‡=๐‘ฅ2, expect 11๐‘ฅโˆ’๐‘ก with ๐‘ก=1

โˆ‚๐‘ฃ(๐‘ฅ)๐‘ฃ(๐‘ฅ)=๐‘ฃโ€ฒ(๐‘ฅ)๐‘ฃ(๐‘ฅ)=2โ‹…๐‘ฅ3

โˆ‚๐‘ฃ(๐‘ฅ)(โˆ‚๐‘ฃ(๐‘ฅ)๐‘ฃ(๐‘ฅ))=(2๐‘ฅ3)โ€ฒ๐‘ฃ(๐‘ฅ)=(2โ‹…3)โ‹…๐‘ฅ4

โ€ฆ

(โˆ‚๐‘ฃ(๐‘ฅ))๐‘›๐‘ฃ(๐‘ฅ)=(๐‘›+1)!โ‹…๐‘ฅ๐‘›+2

๐‘“(๐‘ฅ)=๐‘ฅ+โˆ‘๐‘›=0โˆž1(๐‘›+1)!(โˆ‚๐‘ฃ(๐‘ฅ))๐‘›๐‘ฃ(๐‘ฅ)=โˆ‘๐‘š=1โˆž๐‘ฅ๐‘š=1โˆ’11โˆ’๐‘ฅ

๐‘‘๐‘“(๐‘ฅ)๐‘ฃ(๐‘ฅ)=(11โˆ’๐‘ฅ)2๐‘ฅ2=(๐‘ฅ1โˆ’๐‘ฅ)2=๐‘ฃ(๐‘“(๐‘ฅ))

Question

The ๐‘“(๐‘ก,๐‘ฅ) in ๐‘“(0,๐‘ฅ)=๐‘ฅ,๐‘“(1,๐‘ฅ)=๐‘“(๐‘ฅ) should correspond to the case of a dilation vector field ๐‘กโ‹…๐‘ฃ(๐‘ฅ)

One-parameter homomorphism embedding ๐‘“(๐‘ก,๐‘ฅ):โ„โ†ชย Diff

โˆ’๐‘ฃ and initial value ๐‘ฆ=๐‘“(๐‘ฅ) gives ๐‘“โˆ’1. ๐‘“โˆ’1(๐‘ก,๐‘ฆ)=๐‘“(โˆ’๐‘ก,๐‘ฆ)

๐‘“(๐‘ก,๐‘ฅ) is called flow. exp road emission-like coordinates

vector-field-as-ฮด-diffeomorphism_(tag) Near ๐Ÿ™, the vector field is the coordinate of the diffeomorphism group ๐‘ฃโ‡ย expย ๐‘ฃ, similar to #link(<geodesic-coordinate>)[]

ODE

๐‘‘๐‘‘๐‘ก(expย ๐‘ก๐‘ฃ)(๐‘ฅ)=๐‘ฃ((expย ๐‘ก๐‘ฃ)(๐‘ฅ))

wiki:Cauchy-Kovalevskaya_theorem, the estimation of the radius of convergence uses a special upper bound control method, similar to what is done in #link(<inverse-analytic>)[]

๐น(๐‘ฅ,๐›พ)=๐‘๐‘ฅ๐‘ฅโˆ’๐›พ, ๐‘‘๐‘‘๐‘ก๐›พ=๐น(๐‘ฅ,๐›พ) ==> ๐›พ(๐‘ก,๐‘ฅ)=๐‘ฅโˆ’(๐‘ฅ2โˆ’2๐‘๐‘ก๐‘ฅ)12

integral-curve_(tag) Picard iteration of ODE solution (wiki) representation or integral curve e.g.

๐‘ฅ(๐‘ก)=โˆ‘๐‘›=0..โˆžโˆซ0๐‘ก๐‘‘๐‘ก๐‘›โˆซ0๐‘ก๐‘›๐‘‘๐‘ก๐‘›โˆ’1โ‹ฏโˆซ0๐‘ก0๐‘‘๐‘ก1๐‘“(๐‘ก๐‘›,โ‹ฏ๐‘“(๐‘ก1,๐‘ฅ(0))โ‹ฏ)

If it is a linear ODE, then (alias Dyson series)

๐‘ฅ(๐‘ก)=โˆ‘๐‘›=0..โˆžโˆซ0๐‘ก๐‘‘๐‘ก๐‘›โˆซ0๐‘ก๐‘›๐‘‘๐‘ก๐‘›โˆ’1โ‹ฏโˆซ0๐‘ก0๐‘‘๐‘ก1๐ด(๐‘ก๐‘›)โ‹ฏ๐ด(๐‘ก1)๐‘ฅ(0)

Linear ODE. The solution of a constant coefficient ODE can be written by transforming it into a first-order differential equation system + Jordan normal form

Lie-bracket_(tag) Lie bracket

as generator of conjugate-action of Diff

conjugation action of the Diff group ๐‘”,๐‘“โ‡๐‘“๐‘”๐‘“โˆ’1

Differential := ad(๐‘ฃ)(๐‘ค)=[๐‘ฃ,๐‘ค]

note that ๐‘”,๐‘“โ‡๐‘”๐‘“๐‘”โˆ’1 is a different map, if we consider the order of ๐‘”,๐‘“

[๐‘ฃ,๐‘ค](๐‘ฅ)=โˆ‚๐‘ฃ(๐‘ฅ)๐‘ค(๐‘ฅ)โˆ’โˆ‚๐‘ค(๐‘ฅ)๐‘ฃ(๐‘ฅ)

[๐‘ฃ,๐‘ค]=[๐‘ค,๐‘ฃ]

for GL,gl, [๐ด,๐ต]โˆผ๐ด๐ตโˆ’๐ต๐ด

Lie-derivative_(tag) Lie derivative alias drag derivative

let ๐‘ฃ generate a one-parameter diffeomorphism ๐‘กโ‡๐‘“๐‘กโˆˆย Diff

let ๐‘ค๐‘ก=๐‘‘๐‘“๐‘กโˆ’1(๐‘“๐‘ก(๐‘ฅ):ย base,๐‘ค(๐‘“๐‘ก(๐‘ฅ)):ย vector)

๐ฟ๐‘ฃ(๐‘ค)โ‰”ย limย ๐‘กโ†’01๐‘ก(๐‘ค๐‘กโˆ’๐‘ค0)

๐ฟ๐‘ฃ(๐‘ค)=[๐‘ฃ,๐‘ค]

Jacobi identity ๐ฟ[๐‘ฃ,๐‘ค]=[๐ฟ๐‘ฃ,๐ฟ๐‘ค] or [๐‘ฃ1,[๐‘ฃ2,๐‘ค3]]+[๐‘ฃ3,[๐‘ฃ1,๐‘ฃ2]]+[๐‘ฃ2,[๐‘ฃ3,๐‘ฃ1]]=0

Lie derivative can also be defined for tensor fields โ€ฆ

linear-PDE-integrable-condition_(tag) related to the symmetry of the second-order derivative. This condition allows the solution of a first-order linear PDE to come from successive integration curve of ODEs, and the result does not depend on the choice of path