1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

Gradient and divergence are ๐ฟ2 adjoint to each other.

โˆซ๐‘‘ย Volย ๐‘”(๐‘‹,โˆ‚๐‘“)=โˆซ๐‘‘ย Volย ๐‘”(โˆ‚โ€ ๐‘‹,๐‘“)

or

โˆซ๐‘‘ย Volย ๐‘”(๐‘‹,ย gradย ๐‘“)=โˆ’โˆซ๐‘‘ย Volย ๐‘”(divย ๐‘‹,๐‘“)

Generalize to general tensors. For example, suppose "covariant differentiation" adds (โŠค๐‘€)โŠบ to the first position, i.e.

โˆ‡:ย tensorย โ†’(โŠค๐‘€)โŠบโŠ—ย tensor

Then the adjoint is

โˆ‡โ€ :(โŠค๐‘€)โŠบโŠ—ย tensorย โ†’ย tensor

let โŸจ,โŸฉ๐ฟ2=โˆซ๐‘‘ย Volย ๐‘”(,)

adjoint :=

For every ๐‘†โˆˆย tensor, the linear function

(๐‘‡โ‡โŸจโˆ‡๐‘‡,๐‘†โŸฉ๐ฟ2)โˆˆย tensorโŠบ

has a metric-dual

โˆ‡โ€ ๐‘†โˆˆย tensor

Such that the linear function can be expressed as

๐‘‡โ‡โŸจ๐‘‡,โˆ‡โ€ ๐‘†โŸฉ

Which is the Lagrangian for Laplacian? We can arbitrarily add the action mass term ๐‘š2|๐‘‡|2.

  • |โˆ‡๐‘‡|2๐‘‘ย Vol. eq โˆ‡โ€ โˆ‡๐‘‡ or โˆ‡โ€ ๐œ‡โˆ‡๐œ‡๐‘‡=0
  • |โˆ‡โ€ ๐‘‡|2๐‘‘ย Vol. eq โˆ‡โˆ‡โ€ ๐‘‡=0 or โˆ‡๐œ‡โˆ‡โ€ ๐œ‡๐‘‡=0
  • (|โˆ‡๐‘‡|2+|โˆ‡โ€ ๐‘‡|2)๐‘‘ย Vol. eq (โˆ‡โ€ โˆ‡+โˆ‡โˆ‡โ€ )๐‘‡=0 or (โˆ‡โ€ ๐œ‡โˆ‡๐œ‡+โˆ‡๐œ‡โˆ‡โ€ ๐œ‡)๐‘‡=0

Special case

โˆ‡:โจ‚๐‘˜(โŠค๐‘€)โŠบโ†’โจ‚๐‘˜+1(โŠค๐‘€)โŠบ

adjoint

โˆ‡โ€ :โจ‚๐‘˜+1(โŠค๐‘€)โŠบโ†’โจ‚๐‘˜(โŠค๐‘€)โŠบ

In coordinates

โˆ‡(๐‘‘๐‘ฅ๐‘–)=โˆ’ฮ“๐‘–โ€ฒ๐‘–โ€ณ๐‘–๐‘‘๐‘ฅ๐‘–โ€ฒโŠ—๐‘‘๐‘ฅ๐‘–โ€ณโˆ‡(๐‘Ž๐‘–๐‘‘๐‘ฅ๐‘–)=(โˆ‚๐‘–โ€ฒ๐‘Ž๐‘–โ€ณโˆ’๐‘Ž๐‘–ฮ“๐‘–โ€ฒ๐‘–โ€ณ๐‘–)๐‘‘๐‘ฅ๐‘–โ€ฒโŠ—๐‘‘๐‘ฅ๐‘–โ€ณ

adjoint

โˆ‡โ€ (๐‘‘๐‘ฅ๐‘–)=โˆ’๐‘”๐‘–๐‘–โ€ฒฮ“๐‘–โ€ฒ๐‘–๐‘–โˆ‡โ€ (๐‘Ž๐‘–๐‘‘๐‘ฅ๐‘–)=๐‘”๐‘–๐‘–โ€ฒ(โˆ‚๐‘–โ€ฒ๐‘Ž๐‘–โˆ’ฮ“๐‘–โ€ฒ๐‘–๐‘–)

โˆ’๐‘”๐‘–๐‘–โ€ฒฮ“๐‘–๐‘–โ€ฒ๐‘—=1|๐‘”|โˆ‚๐‘–(|๐‘”|๐‘”๐‘–๐‘—)

โŠ™,โˆง are the basic building blocks for constructing mixed symmetry.

Using algebraic techniques, define

โˆ‡โŠ™:โจ€๐‘˜(โŠค๐‘€)โŠบโ†’โจ€๐‘˜+1(โŠค๐‘€)โŠบโˆ‡โˆง:โ‹€๐‘˜(โŠค๐‘€)โŠบโ†’โ‹€๐‘˜+1(โŠค๐‘€)โŠบ

Using

sym(๐‘‘๐‘ฅ๐‘–โŠ—๐‘‘๐‘ฅ๐‘–โ€ฒ)=๐‘‘๐‘ฅ๐‘–โŠ™๐‘‘๐‘ฅ๐‘–โ€ฒ

Define

โˆ‡โŠ™=ย symโˆ‡

In coordinates

โˆ‡โŠ™(๐‘‘๐‘ฅ๐‘–)=โˆ’ฮ“๐‘–โ€ฒ๐‘–โ€ณ๐‘–๐‘‘๐‘ฅ๐‘–โ€ฒโŠ™๐‘‘๐‘ฅ๐‘–โ€ณ

and

โˆ‡โŠ™(๐‘Ž๐‘–๐‘‘๐‘ฅ๐‘–)=(โˆ‚๐‘–โ€ฒ๐‘Ž๐‘–โ€ณโˆ’๐‘Ž๐‘–ฮ“๐‘–โ€ฒ๐‘–โ€ณ๐‘–)๐‘‘๐‘ฅ๐‘–โ€ฒโŠ™๐‘‘๐‘ฅ๐‘–โ€ณ

"product rule"

โˆ‡โŠ™(๐‘Ž๐‘–๐‘—๐‘‘๐‘ฅ๐‘–โŠ™๐‘‘๐‘ฅ๐‘–โ€ฒ)=โˆ‡โŠ™๐‘Ž๐‘–๐‘—โŠ™๐‘‘๐‘ฅ๐‘–โŠ™๐‘‘๐‘ฅ๐‘–โ€ฒ+๐‘Ž๐‘–๐‘—(โˆ‡โŠ™๐‘‘๐‘ฅ๐‘–)โŠ™๐‘‘๐‘ฅ๐‘–โ€ฒ+๐‘Ž๐‘–๐‘—๐‘‘๐‘ฅ๐‘–โŠ™(โˆ‡โŠ™๐‘‘๐‘ฅ๐‘–โ€ฒ)

Then define the adjoint โˆ‡โŠ™โ€ . Also there is

โˆ‡โŠ™โ€ =ย symโˆ‡โ€ 

"product rule" (Question)

โˆ‡โŠ™โ€ (๐‘Ž๐‘–๐‘–โ€ฒ๐‘‘๐‘ฅ๐‘–โŠ™๐‘‘๐‘ฅ๐‘–โ€ฒ)=โˆ‡โ€ (๐‘Ž๐‘–๐‘–โ€ฒ๐‘‘๐‘ฅ๐‘–)โŠ™๐‘‘๐‘ฅ๐‘–โ€ฒ+๐‘‘๐‘ฅ๐‘–โŠ™โˆ‡โ€ (๐‘Ž๐‘–๐‘–โ€ฒ๐‘‘๐‘ฅ๐‘–โ€ฒ)

โˆ‡โˆง=ย altโˆ‡

But โˆ‡โˆง(๐‘‘๐‘ฅ๐‘–)=โˆ’ฮ“๐‘–โ€ฒ๐‘–โ€ณ๐‘–๐‘‘๐‘ฅ๐‘–โ€ฒโˆง๐‘‘๐‘ฅ๐‘–โ€ณ=0, due to the symmetry of ฮ“.

So โˆ‡โˆง=๐‘‘ is the exterior derivative.

In coordinates ๐‘‘(๐‘Ž๐‘–๐‘‘๐‘ฅ๐‘–)=โˆ‚๐‘–โ€ฒ๐‘Ž๐‘–๐‘‘๐‘ฅ๐‘–โ€ฒโˆง๐‘‘๐‘ฅ๐‘–

๐‘‘ also has an adjoint ๐‘‘โ€ 

The Lagrangian for the Laplacian of โˆ‡โŠ™,๐‘‘?

  • |๐‘ƒ(๐‘‡)|2. eq ๐‘ƒโ€ ๐‘ƒ(๐‘‡)=0
  • |๐‘ƒโ€ (๐‘‡)|2. eq ๐‘ƒ๐‘ƒโ€ (๐‘‡)=0
  • |๐‘ƒ(๐‘‡)|2+|๐‘ƒโ€ (๐‘‡)|2. eq (๐‘ƒโ€ ๐‘ƒ+๐‘ƒ๐‘ƒโ€ )(๐‘‡)=0

The variables in the Lagrangian should probably use โˆ‡โŠ™๐‘‡,๐‘‘๐œ” instead of โˆ‡๐‘‡

The differentiation of the Lagrangian should probably use โˆ‚๐ฟโˆ‚(โˆ‡โŠ™๐‘‡),โˆ‚๐ฟโˆ‚(๐‘‘๐œ”) instead of โˆ‚๐ฟโˆ‚(โˆ‡๐‘‡)

For scalar fields as zeroth-order tensor fields, assume โˆ‚=๐‘‘=โˆ‡ and โˆ‚โ€ =๐‘‘โ€ =โˆ‡โ€ =0. At this time

  • โˆ‚โˆ‚โ€ =0
  • โˆ‚โ€ โˆ‚+โˆ‚โˆ‚โ€ =โˆ‚โ€ โˆ‚

In coordinates

  • gradient gradย ๐‘“=(๐‘”๐‘–๐‘—โˆ‚๐‘–๐‘“)โˆ‚๐‘—

  • divergence divย ๐‘‹=1|๐‘”|โˆ‚๐‘–(|๐‘”|๐‘‹๐‘–)

  • Laplacian โˆ†๐‘“=ย divย ย gradย ๐‘“=1|๐‘”|โˆ‚๐‘–(|๐‘”|๐‘”๐‘–๐‘—โˆ‚๐‘—๐‘“)

At the origin of geodesic coordinates, ๐‘”=๐œ‚,โˆ‚๐‘”=0

  • gradient gradย ๐‘“=๐œ€๐‘–(โˆ‚๐‘–๐‘“)โˆ‚๐‘– where ๐œ€๐‘–โˆˆ{ยฑ1} is the ๐‘–-th component of the quadratic form of ๐‘,๐‘ž.

  • divergence divย ๐‘‹=โˆ‚๐‘–๐‘‹๐‘–

  • harmonician โˆ†๐‘“=ย divย ย gradย ๐‘“=๐œ€๐‘–โˆ‚๐‘–2๐‘“

The same is true in flat metric coordinates.