1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

cf. #link(<Klein--Gordon-Lagrangian>)[Action of scalar field]

Symmetry and conserved currents

  • Spacetime translation

Spacetime translation does not fix the โ„1,3 "boundary". The variation is non-zero. Similar to the case of time translation for a point particle

๐‘‘๐‘‘๐‘ โˆซโ„1,3+๐‘ ๐‘Ž๐‘‘๐‘ฅ(๐‘“(๐‘ฅ))=โˆซโ„1,3๐‘‘๐‘ฅ(โˆ‚๐‘ฅ๐‘“(๐‘ฅ)โ‹…๐‘Ž)

Generally, region change is given by exp(๐‘Ž(๐‘ฅ)) #link(<vector-field-as-ฮด-diffeomorphism>)[by ฮด diffeomorphism] ๐‘Ž(๐‘ฅ)

๐‘‘๐‘‘๐‘ โˆซexp(๐‘ ๐‘Ž(๐‘ฅ))๐‘ˆ๐‘‘๐‘ฅ(๐‘“(๐‘ฅ))=โˆซ๐‘ˆ๐‘‘๐‘ฅ(โˆ‚๐‘ฅ๐‘“(๐‘ฅ)โ‹…๐‘Ž(๐‘ฅ))

Using the change of variable formula

โˆซโ„1,3+๐‘ ๐‘Ž๐‘‘๐‘ฅ(๐‘“(๐‘ฅ))=โˆซโ„1,3๐‘‘๐‘ฅ(๐‘“(๐‘ฅ+๐‘ ๐‘Ž))

Swap differentiation and integration

๐‘‘๐‘‘๐‘ โˆซโ„1,3๐‘‘๐‘ฅ(๐‘“(๐‘ฅ+๐‘ ๐‘Ž))=โˆซโ„1,3๐‘‘๐‘ฅ๐‘‘๐‘‘๐‘ ๐‘“(๐‘ฅ+๐‘ ๐‘Ž)

Apply it to

๐‘“(๐‘ฅ)=๐ฟ(ฯ•(๐‘ฅ),โˆ‚ฯ•(๐‘ฅ))

Consider the derivative of the action for a variation that is a translation in the ๐œˆโˆˆโ„1,3 direction. let ฮ”ฯ•=โˆ‚๐œˆฯ•, first order derivative ฮ”๐‘†=

โˆซโ„1,3๐‘‘๐‘ฅ(โˆ‚๐œˆ๐ฟ)=โˆซโ„1,3๐‘‘๐‘ฅ(โˆ‚๐ฟโˆ‚ฯ•โ‹…ฮ”ฯ•+โˆ‚๐ฟโˆ‚(โˆ‚๐‘ฅฯ•)โ‹…โˆ‚๐‘ฅฮ”ฯ•)

use product rule

โˆ‚๐‘ฅโ€ (โˆ‚๐ฟโˆ‚(โˆ‚๐‘ฅฯ•)โ‹…ฮ”ฯ•)=(โˆ‚๐‘ฅโ€ โˆ‚๐ฟโˆ‚(โˆ‚๐‘ฅฯ•))โ‹…ฮ”ฯ•+โˆ‚๐ฟโˆ‚(โˆ‚๐‘ฅฯ•)โ‹…โˆ‚๐‘ฅฮ”ฯ•

use Lagrange-equation

โˆ‚๐ฟโˆ‚ฯ•โˆ’โˆ‚๐‘ฅโ€ โˆ‚๐ฟโˆ‚(โˆ‚๐‘ฅฯ•)=0

use divergence + zero boundary, to get

โˆซโ„1,3๐‘‘๐‘ฅ(โˆ‚๐œˆ๐ฟ)=โˆซโ„1,3๐‘‘๐‘ฅ(โˆ‚๐‘ฅโ€ (โˆ‚๐ฟโˆ‚(โˆ‚๐‘ฅฯ•)โ‹…ฮ”ฯ•))

energy-momentum-tensor-KG_(tag)

๐‘‡=๐‘‡๐œˆ๐œ‡={โˆ‚๐ฟโˆ‚(โˆ‚๐œ‡ฯ•)โ‹…โˆ‚๐œˆฯ•ย ย ifย ย ๐œ‡โ‰ ๐œˆโˆ‚๐ฟโˆ‚(โˆ‚๐œˆฯ•)โ‹…โˆ‚๐œˆฯ•โˆ’๐ฟย ย ifย ย ๐œ‡=๐œˆ

get

0=โˆซโ„1,3๐‘‘๐‘ฅ(โˆ‚โ€ ๐‘‡โ‹…โˆ‚๐œˆฯ•)

for all โˆ‚๐œˆฯ• as coordinate-frame, so โˆ‚โ€ ๐‘‡=โˆ‚๐œ‡๐‘‡๐œˆ๐œ‡=0

for ๐ฟ(ฯ•,โˆ‚๐‘ฅฯ•)=12(โˆ‚ฯ•โˆ—โ‹…โˆ‚ฯ•โˆ’๐‘š2ฯ•โˆ—ฯ•) calculate

โˆ‚๐ฟโˆ‚(โˆ‚๐œ‡ฯ•)โ‹…โˆ‚๐œˆฯ•=ย Reย (โˆ‚๐œ‡ฯ•โˆ—โˆ‚๐œˆฯ•)

or โˆ‚๐ฟโˆ‚(โˆ‚๐‘ฅฯ•)=Re(โˆ‚๐‘ฅฯ•โˆ—โ‹…)

It can be seen that this EM tensor, after the index is lowered, ๐‘‡๐œ‡๐œˆ=Re(โˆ‚๐œ‡ฯ•โˆ—โˆ‚๐œˆฯ•) is symmetric, so ๐‘‡๐œ‡๐œˆ=๐‘‡๐œˆ๐œ‡

In addition, the KG action ๐ฟ is a real value, so its EM tensor is a real value

Assume that the EM tensor of โ„1,3 can be integrated over โ„3. Use the notation (๐‘ฅ0,๐‘ฅ)โˆˆโ„1,3. energy

๐ธ=โˆซโ„3๐‘‘๐‘ฅ(๐‘‡00)=โˆซโ„3๐‘‘๐‘ฅ12(|โˆ‚0ฯ•|2+|โˆ‚๐‘ฅฯ•|2+๐‘š2|ฯ•|2)

General potential ๐‘š2|ฯ•|2 => ๐‘‰(|ฯ•|2)

The energy of a relativistic scalar field is real and positive

conserved-spatial-integral-energy-KG_(tag)

Fixing the โ„1,3 coordinates, assume ๐‘‡๐œ‡0 is a quantity integrable over โ„3

โˆ‚0โˆซโ„3๐‘‘๐‘ฅ(๐‘‡๐œ‡0)=โˆซโ„3๐‘‘๐‘ฅ(โˆ‚0๐‘‡๐œ‡0)=โˆ’โˆซโ„3๐‘‘๐‘ฅ(โˆ‚1๐‘‡๐œ‡1+โˆ‚2๐‘‡๐œ‡2+โˆ‚3๐‘‡๐œ‡3)ย ย byย ย โˆ‚โ€ ๐‘‡๐œ‡=0=โˆ’ย limย ๐‘Ÿโ†’โˆžโˆซ๐”น3(๐‘Ÿ)๐‘‘๐‘ฅ(divย ๐‘‡๐œ‡๐‘ฅ)=โˆ’ย limย ๐‘Ÿโ†’โˆžโˆซ๐•Š2(๐‘Ÿ)๐‘‘ย Volย (๐‘‡๐œ‡๐‘ฅโ‹…๐‘ฅ|๐‘ฅ|)

As long as we assume that the flux density ๐‘Ÿโ†’โˆžโŸน๐‘‡๐œ‡๐‘ฅโ‹…๐‘ฅ|๐‘ฅ|โ†’0, then we have time invariance of โˆซโ„3๐‘‘๐‘ฅ(๐‘‡๐œ‡0)

  • ๐‘‡00=12(|โˆ‚0ฯ•|2+|โˆ‚๐‘ฅฯ•|2+๐‘š2|ฯ•|2). Field energy conservation โˆ‚0๐ธ=0

  • ๐‘‡๐‘ฅ0=Re(โˆ‚0ฯ•โˆ—โˆ‚๐‘ฅฯ•). Field momentum (?) conservation

Other ๐‘‡ components, e.g. โˆซโ„1,3๐‘‘๐‘ฅ(๐‘‡๐œ‡1), are invariant along the ๐‘ฅ1 direction. Use โˆ‚1, the integral of โ„1,2 and its div. The limit of region approximation lim๐‘Ÿโ†’โˆž is for hyperbolic geodesic spheres (multi-radius)

Example For plane wave expansion

ฯ•(๐‘ฅ)=โˆซโ„๐•ช3๐•Š(Imย โ„‚)๐‘‘๐‘๐‘‘ย iย (๐‘Ž(๐‘,i)๐‘’๐‘๐‘ฅย i)

Energy is (Question)

๐ธ=โˆซโ„๐•ช3๐•Š(Imย โ„‚)๐‘‘๐‘๐‘‘ย iย (๐‘02|๐‘Ž(๐‘,i)|2)
  • Rotation and boost

For fields, whether spatial rotation or boost, even if the Lagrangian is invariant, the action still changes

Now use the notation (๐‘ฅ0,๐‘ฅ),(โˆ‚0,โˆ‚๐‘ฅ)โˆˆโ„1,3

  • Spatial rotation of ๐‘–,๐‘—. If (๐‘ฅ๐‘–,๐‘ฅ๐‘—)=๐‘Ÿ(cosย ๐‘ก,ย sinย ๐‘ก), then ๐‘‘๐‘‘๐‘ก=๐‘Ÿ(โˆ’ย sinย ๐‘ก,ย cosย ๐‘ก)=(โˆ’๐‘ฅ๐‘—,๐‘ฅ๐‘–), so the tangent vector is โˆ’๐‘ฅ๐‘—โˆ‚๐‘–+๐‘ฅ๐‘–โˆ‚๐‘—

    Let ๐‘›โˆˆso(3)โ‰ƒโ„3 be the spatial rotation axis, then the tangent vector will be ๐‘›โ‹…(๐‘ฅร—โˆ‚)

  • Boost of 0,๐‘–. If (๐‘ฅ0,๐‘ฅ๐‘–)=๐‘Ÿ(coshย ๐‘ก,ย sinhย ๐‘ก), then ๐‘‘๐‘‘๐‘ก=๐‘Ÿ(sinhย ๐‘ก,ย coshย ๐‘ก)=(๐‘ฅ๐‘–,๐‘ฅ0), so the tangent vector is ๐‘ฅ๐‘–โˆ‚0+๐‘ฅ0โˆ‚๐‘–

    Let ๐‘›โˆˆโ„3 be the spatial boost axis, then the tangent vector will be ๐‘›โ‹…(๐‘ฅ0โˆ‚โˆ’๐‘ฅโˆ‚0) (The โ„1,3 spacetime metric has negative definite space)

Now use the notation ๐‘ฅ,โˆ‚๐‘ฅโˆˆโ„1,3. The tangent vectors for rotation and boost are collectively denoted as [๐‘ฅ,โˆ‚๐‘ฅ], acting as ฮด spacetime rotation so(1,3) on the field ฯ•, as a ฮด diffeomorphism

โˆซโ„1,3๐‘‘๐‘ฅ([๐‘ฅ,โˆ‚]๐ฟ)=โˆซโ„1,3๐‘‘๐‘ฅ(โˆ‚๐ฟโˆ‚ฯ•โ‹…[๐‘ฅ,โˆ‚๐‘ฅ]ฯ•+โˆ‚๐ฟโˆ‚(โˆ‚๐‘ฅฯ•)โ‹…โˆ‚๐‘ฅ[๐‘ฅ,โˆ‚๐‘ฅ]ฯ•)

Using the KG equation, rearranging terms, we get the zero-divergence conserved current

angular-momentum-KG_(tag) let ๐‘‡ be the energy-momentum tensor of the KG field. The angular momentum of the field

๐‘€=[๐‘ฅ,๐‘‡]

or

๐‘€๐œ‡๐œˆ๐œ†=[๐‘ฅ๐œ‡,๐‘‡๐œˆ๐œ†]
  • Current of KG field under gauge field

let ฯ•(๐‘ฅ) be the solution of KG eq. The phase change ๐‘’๐œƒ(๐‘ฅ)ฯ•(๐‘ฅ) and its ฮด change ๐œƒฯ• belong to variations near the solution with fixed boundaries, so

0=โˆซโ„1,3๐‘‘๐‘ฅ12(โˆ‚(โˆ’๐œƒฯ•โˆ—)โ‹…โˆ‚ฯ•+โˆ‚ฯ•โˆ—โ‹…โˆ‚(๐œƒฯ•))=โˆซโ„1,3๐‘‘๐‘ฅ12(โˆ’ฯ•โˆ—โˆ‚ฯ•+ฯ•โˆ‚ฯ•โˆ—)โ‹…โˆ‚๐œƒ

Using product rule + divergence + Stokes' theorem + zero boundary

0=โˆซโ„1,3๐‘‘๐‘ฅ(12โˆ‚โ€ (โˆ’ฯ•โˆ—โˆ‚ฯ•+ฯ•โˆ‚ฯ•โˆ—)๐œƒ)

for all Im(โ„‚) valued function ๐œƒ(๐‘ฅ), therefore

โˆ€๐‘ฅโˆˆโ„1,3,โˆ‚โ€ (โˆ’ฯ•โˆ—โˆ‚ฯ•+ฯ•โˆ‚ฯ•โˆ—)=0

โˆ’ฯ•โˆ—โˆ‚ฯ•+ฯ•โˆ‚ฯ•โˆ— is called the 4-current of the KG field current-gauge-KG_(tag)

โˆ’ฯ•โˆ—โˆ‚ฯ•+ฯ•โˆ‚ฯ•โˆ—=โˆ’Im(ฯ•โˆ—โˆ‚ฯ•)

Fixing the โ„1,3 coordinates, and considering the 4-current components as quantities integrable over โ„3, then the zero component, i.e., charge conservation, holds conserved-spatial-integral-charge-KG_(tag)

0=โˆ‚๐‘กโˆซโ„3๐‘‘๐‘ฅ(โˆ’ฯ•โˆ—โˆ‚๐‘กฯ•+ฯ•โˆ‚๐‘กฯ•โˆ—)=โˆ‚๐‘ก๐‘„

note that it's non positive defnite, (ฯ•,๐œ“)โ‡โˆ’๐œ“โˆ—โˆ‚๐‘กฯ•+ฯ•โˆ‚๐‘ก๐œ“โˆ— is anti-Hermitian