1. notice
  2. English
  3. 1. feature
  4. logic-topic
  5. 2. logic
  6. 3. set-theory
  7. 4. map
  8. 5. order
  9. 6. combinatorics
  10. calculus
  11. 7. real-numbers
  12. 8. limit-sequence
  13. 9. โ„^n
  14. 10. Euclidean-space
  15. 11. Minkowski-space
  16. 12. polynomial
  17. 13. analytic-Euclidean
  18. 14. analytic-Minkowski
  19. 15. analytic-struct-operation
  20. 16. ordinary-differential-equation
  21. 17. volume
  22. 18. integral
  23. 19. divergence
  24. 20. limit-net
  25. 21. compact
  26. 22. connected
  27. 23. topology-struct-operation
  28. 24. exponential
  29. 25. angle
  30. geometry
  31. 26. manifold
  32. 27. metric
  33. 28. metric-connection
  34. 29. geodesic-derivative
  35. 30. curvature-of-metric
  36. 31. Einstein-metric
  37. 32. constant-sectional-curvature
  38. 33. simple-symmetric-space
  39. 34. principal-bundle
  40. 35. group-action
  41. 36. stereographic-projection
  42. 37. Hopf-bundle
  43. field-theory
  44. 38. point-particle-non-relativity
  45. 39. point-particle-relativity
  46. 40. scalar-field
  47. 41. scalar-field-current
  48. 42. scalar-field-non-relativity
  49. 43. projective-lightcone
  50. 44. spacetime-momentum-spinor-representation
  51. 45. Lorentz-group
  52. 46. spinor-field
  53. 47. spinor-field-current
  54. 48. electromagnetic-field
  55. 49. Laplacian-of-tensor-field
  56. 50. Einstein-metric
  57. 51. interaction
  58. 52. harmonic-oscillator-quantization
  59. 53. spinor-field-misc
  60. 54. reference
  61. ไธญๆ–‡
  62. 55. notice
  63. 56. feature
  64. ้€ป่พ‘
  65. 57. ้€ป่พ‘
  66. 58. ้›†ๅˆ่ฎบ
  67. 59. ๆ˜ ๅฐ„
  68. 60. ๅบ
  69. 61. ็ป„ๅˆ
  70. ๅพฎ็งฏๅˆ†
  71. 62. ๅฎžๆ•ฐ
  72. 63. ๆ•ฐๅˆ—ๆž้™
  73. 64. โ„^n
  74. 65. Euclidean ็ฉบ้—ด
  75. 66. Minkowski ็ฉบ้—ด
  76. 67. ๅคš้กนๅผ
  77. 68. ่งฃๆž (Euclidean)
  78. 69. ่งฃๆž (Minkowski)
  79. 70. ่งฃๆž struct ็š„ๆ“ไฝœ
  80. 71. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  81. 72. ไฝ“็งฏ
  82. 73. ็งฏๅˆ†
  83. 74. ๆ•ฃๅบฆ
  84. 75. ็ฝ‘ๆž้™
  85. 76. ็ดง่‡ด
  86. 77. ่ฟž้€š
  87. 78. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  88. 79. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  89. 80. ่ง’ๅบฆ
  90. ๅ‡ ไฝ•
  91. 81. ๆตๅฝข
  92. 82. ๅบฆ่ง„
  93. 83. ๅบฆ่ง„็š„่”็ปœ
  94. 84. Levi-Civita ๅฏผๆ•ฐ
  95. 85. ๅบฆ่ง„็š„ๆ›ฒ็އ
  96. 86. Einstein ๅบฆ่ง„
  97. 87. ๅธธๆˆช้ขๆ›ฒ็އ
  98. 88. simple-symmetric-space
  99. 89. ไธปไธ›
  100. 90. ็พคไฝœ็”จ
  101. 91. ็ƒๆžๆŠ•ๅฝฑ
  102. 92. Hopf ไธ›
  103. ๅœบ่ฎบ
  104. 93. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  105. 94. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  106. 95. ็บฏ้‡ๅœบ
  107. 96. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  108. 97. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  109. 98. ๅ…‰้”ฅๅฐ„ๅฝฑ
  110. 99. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  111. 100. Lorentz ็พค
  112. 101. ๆ—‹้‡ๅœบ
  113. 102. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  114. 103. ็”ต็ฃๅœบ
  115. 104. ๅผ ้‡ๅœบ็š„ Laplacian
  116. 105. Einstein ๅบฆ่ง„
  117. 106. ็›ธไบ’ไฝœ็”จ
  118. 107. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  119. 108. ๆ—‹้‡ๅœบๆ‚้กน
  120. 109. ๅ‚่€ƒ

note-math

cf. Action of scalar field

Symmetry and conserved currents

  • Spacetime translation

Spacetime translation does not fix the "boundary". The variation is non-zero. Similar to the case of time translation for a point particle

Generally, region change is given by by ฮด diffeomorphism

Using the change of variable formula

Swap differentiation and integration

Apply it to

Consider the derivative of the action for a variation that is a translation in the direction. let , first order derivative

use product rule

use Lagrange-equation

use divergence + zero boundary, to get

[energy-momentum-tensor-KG]

get

for all as coordinate-frame, so

for calculate

or

It can be seen that this EM tensor, after the index is lowered, is symmetric, so

In addition, the KG action is a real value, so its EM tensor is a real value

Assume that the EM tensor of can be integrated over . Use the notation . energy

General potential =>

The energy of a relativistic scalar field is real and positive

[conserved-spatial-integral-energy-KG]

Fixing the coordinates, assume is a quantity integrable over

As long as we assume that the flux density , then we have time invariance of

  • . Field energy conservation

  • . Field momentum (?) conservation

Other components, e.g. , are invariant along the direction. Use , the integral of and its . The limit of region approximation is for hyperbolic geodesic spheres (multi-radius)

Example For plane wave expansion

Energy is (Question)

  • Rotation and boost

For fields, whether spatial rotation or boost, even if the Lagrangian is invariant, the action still changes

Now use the notation

  • Spatial rotation of . If , then , so the tangent vector is

    Let be the spatial rotation axis, then the tangent vector will be

  • Boost of . If , then , so the tangent vector is

    Let be the spatial boost axis, then the tangent vector will be (The spacetime metric has negative definite space)

Now use the notation . The tangent vectors for rotation and boost are collectively denoted as , acting as ฮด spacetime rotation on the field , as a ฮด diffeomorphism

Using the KG equation, rearranging terms, we get the zero-divergence conserved current

[angular-momentum-KG] let be the energy-momentum tensor of the KG field. The angular momentum of the field

or

  • Current of KG field under gauge field

let be the solution of KG eq. The phase change and its ฮด change belong to variations near the solution with fixed boundaries, so

Using product rule + divergence + Stokes' theorem + zero boundary

for all valued function , therefore

is called the 4-current of the KG field [current-gauge-KG]

Fixing the coordinates, and considering the 4-current components as quantities integrable over , then the zero component, i.e., charge conservation, holds [conserved-spatial-integral-charge-KG]

note that it's non positive defnite, is anti-Hermitian