1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๆ—‹้‡ๅœบๆ‚้กน
  60. 54. ๅ‚่€ƒ
  61. English
  62. 55. notice
  63. 56. feature
  64. logic-topic
  65. 57. logic
  66. 58. set-theory
  67. 59. map
  68. 60. order
  69. 61. combinatorics
  70. calculus
  71. 62. real-numbers
  72. 63. limit-sequence
  73. 64. โ„^n
  74. 65. Euclidean-space
  75. 66. Minkowski-space
  76. 67. polynomial
  77. 68. analytic-Euclidean
  78. 69. analytic-Minkowski
  79. 70. analytic-struct-operation
  80. 71. ordinary-differential-equation
  81. 72. volume
  82. 73. integral
  83. 74. divergence
  84. 75. limit-net
  85. 76. compact
  86. 77. connected
  87. 78. topology-struct-operation
  88. 79. exponential
  89. 80. angle
  90. geometry
  91. 81. manifold
  92. 82. metric
  93. 83. metric-connection
  94. 84. geodesic-derivative
  95. 85. curvature-of-metric
  96. 86. Einstein-metric
  97. 87. constant-sectional-curvature
  98. 88. simple-symmetric-space
  99. 89. principal-bundle
  100. 90. group-action
  101. 91. stereographic-projection
  102. 92. Hopf-bundle
  103. field-theory
  104. 93. point-particle-non-relativity
  105. 94. point-particle-relativity
  106. 95. scalar-field
  107. 96. scalar-field-current
  108. 97. scalar-field-non-relativity
  109. 98. projective-lightcone
  110. 99. spacetime-momentum-spinor-representation
  111. 100. Lorentz-group
  112. 101. spinor-field
  113. 102. spinor-field-current
  114. 103. electromagnetic-field
  115. 104. Laplacian-of-tensor-field
  116. 105. Einstein-metric
  117. 106. interaction
  118. 107. harmonic-oscillator-quantization
  119. 108. spinor-field-misc
  120. 109. reference

note-math

cf. Action of scalar field

Symmetry and conserved currents

  • Spacetime translation

Spacetime translation does not fix the "boundary". The variation is non-zero. Similar to the case of time translation for a point particle

Generally, region change is given by by ฮด diffeomorphism

Using the change of variable formula

Swap differentiation and integration

Apply it to

Consider the derivative of the action for a variation that is a translation in the direction. let , first order derivative

use product rule

use Lagrange-equation

use divergence + zero boundary, to get

[energy-momentum-tensor-KG]

get

for all as coordinate-frame, so

for calculate

or

It can be seen that this EM tensor, after the index is lowered, is symmetric, so

In addition, the KG action is a real value, so its EM tensor is a real value

Assume that the EM tensor of can be integrated over . Use the notation . energy

General potential =>

The energy of a relativistic scalar field is real and positive

[conserved-spatial-integral-energy-KG]

Fixing the coordinates, assume is a quantity integrable over

As long as we assume that the flux density , then we have time invariance of

  • . Field energy conservation

  • . Field momentum (?) conservation

Other components, e.g. , are invariant along the direction. Use , the integral of and its . The limit of region approximation is for hyperbolic geodesic spheres (multi-radius)

Example For plane wave expansion

Energy is (Question)

  • Rotation and boost

For fields, whether spatial rotation or boost, even if the Lagrangian is invariant, the action still changes

Now use the notation

  • Spatial rotation of . If , then , so the tangent vector is

    Let be the spatial rotation axis, then the tangent vector will be

  • Boost of . If , then , so the tangent vector is

    Let be the spatial boost axis, then the tangent vector will be (The spacetime metric has negative definite space)

Now use the notation . The tangent vectors for rotation and boost are collectively denoted as , acting as ฮด spacetime rotation on the field , as a ฮด diffeomorphism

Using the KG equation, rearranging terms, we get the zero-divergence conserved current

[angular-momentum-KG] let be the energy-momentum tensor of the KG field. The angular momentum of the field

or

  • Current of KG field under gauge field

let be the solution of KG eq. The phase change and its ฮด change belong to variations near the solution with fixed boundaries, so

Using product rule + divergence + Stokes' theorem + zero boundary

for all valued function , therefore

is called the 4-current of the KG field [current-gauge-KG]

Fixing the coordinates, and considering the 4-current components as quantities integrable over , then the zero component, i.e., charge conservation, holds [conserved-spatial-integral-charge-KG]

note that it's non positive defnite, is anti-Hermitian