1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

In flat space, linear and affine are often mixed. Similarly, in flat space, so are polynomials. Zero-order polynomials correspond to the use of affine

First deal with the case of one-dimensional real numbers

โ„• exponential power function ๐‘˜โˆˆโ„•,โ„โŸถโ„๐‘ฃโŸฟ๐‘ฃ๐‘˜

polynomial-function-1d_(tag) A polynomial function is a finite linear combination of power functions. (Affine) base point ๐‘ฅ, (vector) offset ๐‘ฃ

๐‘“(๐‘ฅ+๐‘ฃ)=๐‘Ž0+๐‘Ž1๐‘ฃ+โ‹ฏ+๐‘Ž๐‘›๐‘ฃ๐‘›=โˆ‘๐‘˜=0..๐‘›๐‘Ž๐‘˜๐‘ฃ๐‘˜๐‘“(๐‘ฅ)=๐‘Ž0

Polynomial function representation is not affine invariant, i.e. switching the base point ๐‘ฅโ‡๐‘ฅ+ฮ”=๐‘ฆ will result in a polynomial function representation of the same order but with different coefficients. Scaling ๐‘ฃโ‡๐œ†๐‘ฃ is also the case

change-base-point-polynomial_(tag) Switch base point ๐‘ฅโ‡๐‘ฅ+ฮ”=๐‘ฆ

๐‘“(๐‘ฅ+๐‘ฃ)=๐‘Ž0(๐‘ฅ)+๐‘Ž1(๐‘ฅ)๐‘ฃ+โ‹ฏ+๐‘Ž๐‘›(๐‘ฅ)๐‘ฃ๐‘›๐‘“(๐‘ฆ+๐‘ค)=๐‘Ž0(๐‘ฆ)+๐‘Ž1(๐‘ฆ)๐‘ค+โ‹ฏ+๐‘Ž๐‘›(๐‘ฆ)๐‘ค๐‘›

Represents the same affine function

๐‘ฅ+๐‘ฃ=๐‘ฆ+๐‘คโŸน๐‘“(๐‘ฅ+๐‘ฃ)=๐‘“(๐‘ฆ+๐‘ค)

then

๐‘Ž๐‘(๐‘ฆ)=๐‘Ž๐‘(๐‘ฅ+ฮ”)=โˆ‘๐‘˜=๐‘..๐‘›๐‘Ž๐‘˜(๐‘ฅ)(๐‘˜๐‘)ฮ”๐‘˜โˆ’๐‘

Proof ๐‘“(๐‘ฆ+๐‘ฃ)=๐‘“(๐‘ฅ+(ฮ”+๐‘ฃ)) expand the calculation, to compare coefficients, collect ๐‘ฃ power function terms, by the exchange of summation

โˆ‘๐‘˜=0..๐‘›๐‘Ž๐‘˜(๐‘ฅ)(๐‘ฃ+ฮ”)๐‘˜=โˆ‘๐‘˜=0..๐‘›๐‘Ž๐‘˜(๐‘ฅ)โˆ‘๐‘=0..๐‘˜(๐‘˜๐‘)๐‘ฃ๐‘ฮ”๐‘˜โˆ’๐‘=โˆ‘๐‘=0..๐‘›(โˆ‘๐‘˜=๐‘..๐‘›๐‘Ž๐‘˜(๐‘ฅ)(๐‘˜๐‘)ฮ”๐‘˜โˆ’๐‘)๐‘ฃ๐‘˜

If the base point is 0 in the coordinates and the symbol ๐‘ฃโ‡๐‘ฅ is changed, then the polynomial function is expressed as ๐‘“(๐‘ฅ)=๐‘Ž0+๐‘Ž1๐‘ฅ+โ‹ฏ+๐‘Ž๐‘›๐‘ฅ๐‘›

Extending from polynomial as a finite linear combination to a countably infinite linear combination is called the โ„• exponential power series of a function

๐‘“(๐‘ฅ+๐‘ฃ)โ‰ˆ๐‘Ž0+๐‘Ž1๐‘ฃ+โ‹ฏ+๐‘Ž๐‘›๐‘ฃ๐‘›๐‘“(๐‘ฅ+๐‘ฃ)=limย ๐‘›โ†’โˆž๐‘Ž0+๐‘Ž1๐‘ฃ+โ‹ฏ+๐‘Ž๐‘›๐‘ฃ๐‘›

The definitions of some functions do not come directly from the โ„• exponential power series, Example 1๐‘ฅ,1๐‘ง

In addition to โ„• as countably infinite data, โ„ค,โ„š can also be used. The โ„• exponential power function ๐‘ฃ๐‘˜ is changed to the โ„š exponential power function ๐‘ฃ๐‘๐‘ž

  • ๐‘ฃโˆ’๐‘˜=1๐‘ฃ๐‘˜ requires multiplicative inverse

  • ๐‘ฃ1๐‘˜=๐‘ฃ๐‘˜ requires solving the equation ๐‘ค๐‘˜=๐‘ฃ and needs to deal with the issue of whether the number of solutions is unique

  • ๐‘ฃโˆ’๐‘˜ is unbounded at ๐‘ฃ=0

  • When ๐‘๐‘žโˆ‰โ„•, the multiple derivatives will not be interrupted โˆ€๐‘›,(๐‘ฃ๐‘๐‘žโ‡๐‘๐‘žโ‹ฏ(๐‘๐‘žโˆ’๐‘›+1)๐‘ฃ๐‘๐‘žโˆ’๐‘›โ‰ 0)

Here we only deal with โ„• power series for the time being, and refer to them as power series for short

Now deal with the high-dimensional case i.e. โ„๐‘‘โ†’โ„๐‘‘โ€ฒ

If the range is โ„, we can also define the multiplication of functions (๐‘“๐‘”)(๐‘ฅ)=๐‘“(๐‘ฅ)๐‘”(๐‘ฅ) and the multiplicative inverse (1๐‘“)(๐‘ฅ)=1๐‘“(๐‘ฅ)

First try to define polynomial functions and power series based on tensors i.e. multilinear

โจ‚๐‘˜=0..๐‘›โ„๐‘‘

If not necessary, there is no need to take the linear direct sum of tensors of all orders โจ๐‘›=0..โˆž (called tensor algebra)

polynomial-function_(tag) Using the range โ„๐‘‘โ€ฒ and multilinear function ๐‘Ž๐‘˜โˆˆLin((โ„๐‘‘)โŠ—๐‘˜โ†’โ„๐‘‘โ€ฒ). Base point ๐‘ฅ, offset ๐‘ฃ, define polynomial function

๐‘“(๐‘ฅ+๐‘ฃ)=๐‘Ž0+๐‘Ž1๐‘ฃ+โ‹ฏ+๐‘Ž๐‘›๐‘ฃโŠ—๐‘›=โˆ‘0..๐‘›๐‘Ž๐‘˜๐‘ฃโŠ—๐‘˜๐‘“(๐‘ฅ)=๐‘Ž0

Affine transformations, i.e., changing the base point i.e. translation, or linear transformations i.e. GL (including scaling), do not change the order of the polynomial

๐‘Ž1๐‘ฃ,๐‘Ž2๐‘ฃโŠ—2โˆˆโ„๐‘‘โ€ฒ may not be collinear

Extending to โ„‚ is simple. For the cases of โ„,๐•†, due to non-commutativity and non-associativity, high-dimensional linear algebra and tensors require new processing methods

Different tensors may give the same polynomial, but the symmetric tensor is uniquely corresponding

Change notation

  • ๐‘ฃโŠ™๐‘˜โ‡๐‘ฃ๐‘˜ power-tensor_(tag)
  • ๐‘ฃโŠ™๐‘คโ‡๐‘ฃ๐‘ค

The method to restore from a monomial of order ๐‘› or a power tensor ๐‘ฃ๐‘› to a symmetric tensor of order ๐‘› ๐‘ฃ1โ‹ฏ๐‘ฃ๐‘› is difference

In the ๐‘›-th order monomial (๐‘ฃ1+โ‹ฏ+๐‘ฃ๐‘›)๐‘› of ๐‘ฃ1+โ‹ฏ+๐‘ฃ๐‘›, there is a term ๐‘ฃ1โ‹ฏ๐‘ฃ๐‘›, but there are many other interfering terms

The whole problem is symmetric with respect to ๐‘ฃ1,โ€ฆ,๐‘ฃ๐‘›, so a symmetric construction should be used

In the second order (๐‘ฃ1+๐‘ฃ2)2โˆ’๐‘ฃ12โˆ’๐‘ฃ22=2๐‘ฃ1๐‘ฃ2

difference-symmetric-tensor_(tag) Symmetric tensor ๐‘›-th order difference

โˆ‘๐ผโŠ‚{1,โ€ฆ,๐‘›}(โˆ’1)|๐ผ|โˆ’๐‘›(โˆ‘๐‘–โˆˆ๐ผ๐‘ฃ๐‘–)๐‘š={0ย ifย ๐‘š<๐‘›๐‘›!โ‹…๐‘ฃ1โ‹ฏ๐‘ฃ๐‘›ย ifย ๐‘š=๐‘›โ‰ 0ย else

Question Is there an intuitive understanding of the ๐‘›-th order difference?

successive-difference_(tag) The ๐‘›-th order difference can be written as ๐‘› times the first-order difference

โˆ‘๐ผ๐‘›โŠ‚{๐‘›}โ‹ฏโˆ‘๐ผ1โŠ‚{1}(โˆ’1)|๐ผ๐‘›|โˆ’1โ‹ฏ(โˆ’1)|๐ผ1|โˆ’1(โˆ‘๐‘–1โˆˆ๐ผ1๐‘ฃ๐‘–1+โ‹ฏ+โˆ‘๐‘–๐‘›โˆˆ๐ผ๐‘›๐‘ฃ๐‘–๐‘›)๐‘›

where ๐ผ๐‘˜โŠ‚{๐‘˜}โŸบ๐ผ๐‘˜โˆˆSubset{๐‘˜}={โˆ…,{๐‘˜}}, โˆ‘๐‘–๐‘˜โˆˆโˆ…๐‘ฃ๐‘–๐‘˜=0, ๐ผโ‰”โ‹ƒ1..๐‘›๐ผ๐‘˜โŠ‚{1,โ€ฆ,๐‘›}

Due to the commutativity of summation, the order of successive differences does not affect the final result

Proof of #link(<difference-symmetric-tensor>)[]

โˆ‘๐ผโŠ‚{1,โ€ฆ,๐‘›}(โˆ’1)|๐ผ|โˆ’๐‘›(โˆ‘๐‘–โˆˆ๐ผ๐‘ฃ๐‘–)๐‘š=โˆ‘๐ผโŠ‚{1,โ€ฆ,๐‘›}(โˆ’1)|๐ผ|โˆ’๐‘›โˆ‘๐œ‡:{1,โ€ฆ,๐‘š}โ†’๐ด๐‘ฃ๐œ‡(1)โ‹ฏ๐‘ฃ๐œ‡(๐‘š)

Forcibly write it as a summation over all ๐œ‡:{1,โ€ฆ,๐‘š}โ†’{1,โ€ฆ,๐‘›}, with a weight to calculate the number of repetitions

โˆ‘๐œ‡:{1,โ€ฆ,๐‘š}โ†’{1,โ€ฆ,๐‘›}weight(๐œ‡)โ‹…๐‘ฃ๐œ‡(1)โ‹ฏ๐‘ฃ๐œ‡(๐‘š)

where the weight for each ๐œ‡ is defined as

weight(๐œ‡)=(โˆ’1)๐‘›โˆ‘๐ผโˆˆย Subset{1,โ€ฆ,๐‘›}:๐œ‡{1,โ€ฆ,๐‘š}โŠ‚๐ผ(โˆ’1)|๐ผ|

For any non-empty finite set ๐‘‹, โˆ‘๐ดโŠ‚๐‘‹(โˆ’1)|๐ด|=0

Proof

#link(<combination>)[] ๐ดโŠ‚๐‘‹ <==> for each |๐ด|=0,โ€ฆ,|๐‘‹| there are (|๐‘‹||๐ด|) choices

โˆ‘๐ดโŠ‚๐‘‹(โˆ’1)|๐ด|=โˆ‘|๐ด|=0..|๐‘‹|(|๐‘‹||๐ด|)(โˆ’1)|๐ด|=(1โˆ’1)|๐‘‹|=0

for {๐ผโˆˆย Subset{1,โ€ฆ,๐‘›}:๐œ‡{1,โ€ฆ,๐‘š}โŠ‚๐ผ}

define ๐ด(๐ผ)โ‰”๐ผโˆ–๐œ‡{1,โ€ฆ,๐‘š}

define ๐‘‹โ‰”Subset({1,โ€ฆ,๐‘›}โˆ–๐œ‡{1,โ€ฆ,๐‘š})

๐ด(๐ผ) is a bijection

(โˆ’1)|๐ผ|=(โˆ’1)|๐ผโˆ–๐œ‡{1,โ€ฆ,๐‘š}|+|๐œ‡{1,โ€ฆ,๐‘š}|=(โˆ’1)|๐ด|โ‹…(โˆ’1)๐œ‡{1,โ€ฆ,๐‘š}

Weight

weight(๐œ‡)=(โˆ’1)๐‘›โ‹…(โˆ’1)|๐œ‡{1,โ€ฆ,๐‘š}|โ‹…โˆ‘๐ดโŠ‚๐‘‹(โˆ’1)|๐ด|weight(๐œ‡)=0โŸบ๐‘‹โ‰ โˆ…โŸบ๐œ‡{1,โ€ฆ,๐‘š}โŠŠ{1,โ€ฆ,๐‘›}

The last condition

  • When ๐‘š<๐‘›, it must hold for all ๐œ‡
  • When ๐‘š=๐‘›, it only holds when ๐œ‡ is a bijection i.e. ๐œ‡ is all ๐‘›-th order permutations, then weight(๐œ‡)=1

The symmetric tensor makes ๐‘ฃ๐œ‡(1)โ‹ฏ๐‘ฃ๐œ‡(๐‘š)=๐‘ฃ1โ‹ฏ๐‘ฃ๐‘›

There are ๐‘›! ๐‘›-th order permutations

The symmetry of the symmetric multilinear function ๐‘Ž๐‘š allows the properties of #link(<difference-symmetric-tensor>)[difference] to be inherited

difference-polynomial_(tag) The ๐‘›-th order difference of ๐‘“(๐‘ฅ+๐‘ฃ)=๐‘Ž๐‘›๐‘ฃ๐‘› is ๐‘›!โ‹…๐‘Ž๐‘›(๐‘ฃ1โ‹ฏ๐‘ฃ๐‘›)

The ๐‘›-th order difference of ๐‘“(๐‘ฅ+๐‘ฃ)=๐‘Ž๐‘›๐‘ฃ๐‘š,๐‘š<๐‘› is 0

From this, we get that the polynomial function determines its multiple symmetric linear function representation Proof First, ๐‘›-difference gives the same ๐‘Ž๐‘›, after removing ๐‘Ž๐‘› from both sides, it is still the same polynomial function, the order is <๐‘›, continue ๐‘›โˆ’1 difference to get the same ๐‘Ž๐‘›โˆ’1 โ€ฆ

For power series, finite-order difference can never give zero

Formally, division and limits can be used to eliminate higher-order terms

1๐‘ก๐‘›(๐‘Ž๐‘›(๐‘ก๐‘ฃ)๐‘›+๐‘Ž๐‘›+1(๐‘ก๐‘ฃ)๐‘›+1+โ‹ฏ)=๐‘Ž๐‘›๐‘ฃ๐‘›+๐‘Ž๐‘›+1๐‘ฃ๐‘›+1๐‘ก+โ‹ฏ=๐‘Ž๐‘›๐‘ฃ๐‘›+๐‘œ(1)ย limย ๐‘กโ†’0=๐‘Ž๐‘›๐‘ฃ๐‘›