1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

cf. #link(<metric.typ>)[]

geodesic_(tag)

Geodesics as possible "shortest length paths". Action

โˆซ๐‘‘๐‘™=โˆซ๐‘‘๐‘ก|๐‘ฅฬ‡|=โˆซ๐‘‘๐‘ก|๐‘”(๐‘ฅฬ‡)2|12ย orย ย =โˆซ๐‘‘๐‘ก|๐‘”๐‘–๐‘–โ€ฒโ‹…๐‘ฅฬ‡๐‘–โ‹…๐‘ฅฬ‡๐‘–โ€ฒ|12ย orย ย =โˆซ๐‘‘๐‘ก|๐‘ฅฬ‡โŠบ๐‘”๐‘ฅฬ‡|12

ODE initial value ๐‘ฅ(0),๐‘ฅฬ‡(0). The definition of geodesics does not depend on coordinate selection

๐‘‘๐‘™ is the metric-volume-form ๐‘‘ย Volย =|๐‘”|๐‘‘๐‘ฅ=|detย ๐‘”|12๐‘‘๐‘ฅ restricted to a 1 dimension path. detย ๐‘”=ย detย (๐‘”๐‘–๐‘—) is the induced quadratic-form ๐‘”(๐‘‘๐‘ฅ1โˆงโ‹ฏโˆง๐‘‘๐‘ฅ๐‘›)2=ย detย (๐‘”(๐‘‘๐‘ฅ1,๐‘‘๐‘ฅ1)โ‹ฏ๐‘”(๐‘‘๐‘ฅ1,๐‘‘๐‘ฅ๐‘›)โ‹ฎโ‹ฑโ‹ฎ๐‘”(๐‘‘๐‘ฅ๐‘›,๐‘‘๐‘ฅ1)โ‹ฏ๐‘”(๐‘‘๐‘ฅ๐‘›,๐‘‘๐‘ฅ๐‘›))

The Lagrange equation is

๐‘‘๐‘‘๐‘ก(๐‘”๐‘ฅฬ‡|๐‘”(๐‘ฅฬ‡)2|12)=12๐‘ฅฬ‡โŠบ(โˆ‚๐‘”)๐‘ฅฬ‡|๐‘”(๐‘ฅฬ‡)2|12ย whereย โˆ‚๐‘”โ‰ƒ(โˆ‚1๐‘”โ‹ฎโˆ‚๐‘›๐‘”)ย orย ย ๐‘‘๐‘‘๐‘ก(๐‘”๐‘—๐‘–โ€ฒ๐‘ฅ๐‘–โ€ฒ|๐‘”๐‘–๐‘–โ€ฒ๐‘ฅฬ‡๐‘–๐‘ฅฬ‡๐‘–โ€ฒ|12)=12(โˆ‚๐‘—๐‘”๐‘–๐‘–โ€ฒ)๐‘ฅฬ‡๐‘–๐‘ฅฬ‡๐‘–โ€ฒ|๐‘”๐‘–๐‘–โ€ฒ๐‘ฅฬ‡๐‘–๐‘ฅฬ‡๐‘–โ€ฒ|12

For unit length parameter of the path, |๐‘ฅฬ‡|=|๐‘”(๐‘ฅฬ‡)2|12=1, the equation becomes

๐‘‘๐‘‘๐‘ก(๐‘”๐‘ฅฬ‡)=12๐‘ฅฬ‡โŠบ(โˆ‚๐‘”)๐‘ฅฬ‡ย orย ย ๐‘‘๐‘‘๐‘ก(๐‘”๐‘—๐‘–โ€ฒ๐‘ฅ๐‘–โ€ฒ)=12(โˆ‚๐‘—๐‘”๐‘–๐‘–โ€ฒ)๐‘ฅฬ‡๐‘–๐‘ฅฬ‡๐‘–โ€ฒ

product-rule expansion ๐‘‘๐‘‘๐‘ก(๐‘”๐‘ฅฬ‡)=(โˆ‚(๐‘ฅฬ‡)๐‘”)๐‘ฅฬ‡+๐‘”๐‘ฅฬˆ, where โˆ‚(๐‘ฅฬ‡)๐‘”=โˆ‚โˆ‚๐‘ฅฬ‡๐‘”=๐‘‘๐‘‘๐‘ก๐‘”(๐‘ฅ(๐‘ก)). Transposing terms and using ๐‘”โˆ’1, the equation becomes

๐‘ฅฬˆ=๐‘”โˆ’1(12๐‘ฅฬ‡โŠบ(โˆ‚๐‘”)๐‘ฅฬ‡โˆ’(โˆ‚(๐‘ฅฬ‡)๐‘”)๐‘ฅฬ‡)

Or written as

๐‘ฅฬˆ+๐‘ฅฬ‡โŠบฮ“๐‘ฅฬ‡=0ย orย ย ๐‘ฅฬˆ๐‘—+ฮ“๐‘–๐‘–โ€ฒ๐‘—โ‹…๐‘ฅฬ‡๐‘–โ‹…๐‘ฅฬ‡๐‘–โ€ฒ=0

where ฮ“ is metric-connection_(tag) alias Levi-Civita-connection_(tag) alias Christoffel-symbols_(tag)

๐‘ฃโŠบฮ“๐‘ฃ=๐‘”โˆ’1((โˆ‚(๐‘ฃ)๐‘”)๐‘ฃโˆ’12๐‘ฃโŠบ(โˆ‚๐‘”)๐‘ฃ)โˆˆโ„๐‘,๐‘žย orย ๐‘ฃโ€ฒโŠบฮ“๐‘ฃ=12๐‘”โˆ’1((โˆ‚(๐‘ฃโ€ฒ)๐‘”)๐‘ฃ+(โˆ‚(๐‘ฃ)๐‘”)๐‘ฃโ€ฒโˆ’๐‘ฃโ€ฒโŠบ(โˆ‚๐‘”)๐‘ฃ)(cf.ย ย ย #link(<difference-symmetric-tensor>)[difference])ย orย ฮ“๐‘–๐‘–โ€ฒ๐‘—=12โˆ‘๐‘–โ€ณ๐‘”๐‘—๐‘–โ€ณ(โˆ‚๐‘–๐‘”๐‘–โ€ฒ๐‘–โ€ณ+โˆ‚๐‘–โ€ฒ๐‘”๐‘–๐‘–โ€ณโˆ’โˆ‚๐‘–โ€ณ๐‘”๐‘–๐‘–โ€ฒ)

metric-connection is not a tensor. The transformation of metric-connection connection-transformations_(tag)

ฮ“(๐‘ฆ)=โˆ‚๐‘ฆโˆ‚๐‘ฅโ‹…ฮ“(๐‘ฅ)โ‹…โˆ‚๐‘ฅโˆ‚๐‘ฆ+โˆ‚๐‘ฆโˆ‚๐‘ฅโ‹…โˆ‚โˆ‚๐‘ฆ(โˆ‚๐‘ฅโˆ‚๐‘ฆ)

by the transformation of metric ๐‘” in the definition of ฮ“

  • ๐‘”(๐‘ฆ)=โˆ‚๐‘ฅโˆ‚๐‘ฆโŠบโ‹…๐‘”(๐‘ฅ)โ‹…โˆ‚๐‘ฅโˆ‚๐‘ฆ

  • ๐‘”โˆ’1(๐‘ฆ)=โˆ‚๐‘ฆโˆ‚๐‘ฅโ‹…๐‘”โˆ’1(๐‘ฅ)โ‹…โˆ‚๐‘ฆโˆ‚๐‘ฅโŠบ

geodesic-exponential_(tag) โ€ฆ

geodesic-coordinate_(tag)

Geodesic ๐‘กโ‡๐‘ฃ๐‘ก or exp(๐‘ฃ๐‘ก) with ๐‘ก=1 gives coordinate ๐‘ฃโ†’exp(๐‘ฃ)

It is a local diffeomorphism by โˆ‚ย expย =๐Ÿ™ at ๐‘, by

  • The solution of the ODE analytically depends on the initial values ๐‘,๐‘ฃ
  • โˆ‚โˆ‚๐‘ฃย expย =โˆ‚โˆ‚๐‘ก(๐‘ก=0)๐‘ฅ(๐‘ก,๐‘,๐‘ฃ)=๐‘ฃ

In geodesic coordinates, the geodesic equation is ๐‘ฅฬˆ=0. Proof The geodesic is ๐‘กโ‡๐‘ฃ๐‘ก

In geodesic coordinates at point ๐‘, the connection at point ๐‘ is zero, ฮ“(๐‘)=0

Proof

ODE ๐‘ฅฬˆ+๐‘ฅฬ‡โŠบฮ“๐‘ฅฬ‡=0

Initial value ๐‘ฅฬˆ=0 and ๐‘ฅฬ‡=๐‘ฃ

Substitute the solution ๐‘ก๐‘ฃ of the ODE into the ODE to get ๐‘ฃโŠบฮ“๐‘ฃ=0

Thus, at point ๐‘, for all directions ๐‘ฃ, ๐‘ฃโŠบฮ“๐‘ฃ=0 ==> ฮ“=0 at ๐‘

Taylor-expansion-of-metric-in-geodesic-coordinate_(tag)

In geodesic coordinates, the Taylor expansion of the metric is ๐‘”(๐‘+๐‘ฃ)=โˆ‘1๐‘›!(โˆ‚๐‘›๐‘”)(๐‘)(๐‘ฃ๐‘›)

  • The zeroth-order term is the standard metric ๐œ‚

  • The first-order term is zero i.e. the first derivative is zero

Combining the two, ๐‘”(๐‘+๐‘ฃ)=๐œ‚+๐‘œ(๐‘ฃ)

Proof

In geodesic coordinates at point ๐‘

  • 0th. For geodesic coordinates, at point ๐‘, โˆ‚ย expย =๐Ÿ™, which copies the orthonormal basis ๐‘’1,โ€ฆ,๐‘’๐‘› of the origin in geodesic coordinates to the coordinate-frame โˆ‚1,โ€ฆ,โˆ‚๐‘› of the tangent space at point ๐‘

  • 1st.

differenial-of-metric-vs-connection_(tag) Prop ๐‘ฃโŠบ(โˆ‚(๐‘ฃโ€ณ)๐‘”)๐‘ฃโ€ฒ=๐‘ฃโ€ฒโŠบ๐‘”(๐‘ฃโ€ณโŠบฮ“๐‘ฃ)+๐‘ฃโ€ฒโŠบ๐‘”(๐‘ฃโ€ณโŠบฮ“๐‘ฃ) Proof Directly substitute the #link(<metric-connection>)[definition] of ฮ“ into the formula

Then use ฮ“(๐‘)=0 to get โˆ‚๐‘”(๐‘)=0 at point ๐‘

In coordinates โˆ‚๐‘–โ€ณ๐‘”๐‘–๐‘–โ€ฒ=ฮ“๐‘–โ€ณ๐‘–๐‘–โ€ฒ+ฮ“๐‘–โ€ณ๐‘–โ€ฒ๐‘–=๐‘”๐‘–โ€ฒ๐‘—ฮ“๐‘–โ€ณ๐‘–๐‘—+๐‘”๐‘–๐‘—ฮ“๐‘–โ€ณ๐‘–โ€ฒ๐‘—

Can also be written as (โˆ‚(๐‘ฃโ€ณ)๐‘”)(๐‘ฃ,๐‘ฃโ€ฒ)=๐‘”(ฮ“(๐‘ฃโ€ณ,๐‘ฃ),๐‘ฃโ€ฒ)+๐‘”(๐‘ฃ,ฮ“(๐‘ฃโ€ณ,๐‘ฃโ€ฒ))

For the inverse matrix, there is a similar one

differenial-of-metric-inverse-vs-connection_(tag) Prop ๐›ผโŠบ(โˆ‚(๐›ผโ€ณ)๐‘”โˆ’1)๐›ผโ€ฒ=โˆ’(๐›ผโ€ฒโŠบ๐‘”โˆ’1(๐›ผโ€ณโŠบฮ“๐›ผ)+๐›ผโ€ฒโŠบ๐‘”โˆ’1(๐›ผโ€ณโŠบฮ“๐›ผ))

Proof Using ๐‘”๐‘”โˆ’1=๐Ÿ™โŸนโˆ‚(๐‘”๐‘”โˆ’1)=0โŸนโˆ‚(๐‘”โˆ’1)=โˆ’๐‘”โˆ’1(โˆ‚๐‘”)๐‘”โˆ’1 and ๐‘”=๐‘”๐‘”โˆ’1๐‘”

In coordinates โˆ‚๐‘–โ€ณ๐‘”๐‘–๐‘–โ€ฒ=โˆ’ฮ“๐‘–โ€ณ๐‘–๐‘–โ€ฒโˆ’ฮ“๐‘–โ€ณ๐‘–โ€ฒ๐‘–=โˆ’๐‘”๐‘–๐‘—ฮ“๐‘–โ€ณ๐‘—๐‘–โ€ฒโˆ’๐‘”๐‘–โ€ฒ๐‘—ฮ“๐‘–โ€ณ๐‘—๐‘–

Can also be written as (โˆ‚(๐›ผโ€ณ)๐‘”โˆ’1)(๐›ผ,๐›ผโ€ฒ)=๐‘”โˆ’1(โˆ’ฮ“(๐›ผโ€ณ,๐›ผ),๐›ผโ€ฒ)+๐‘”โˆ’1(๐›ผ,โˆ’ฮ“(๐›ผโ€ณ,๐›ผโ€ฒ))