1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

net_(tag)

B a net of ๐ด := Bย โŠ‚Subset(๐ด) (a collection of subset of ๐ด) with property

  • โˆ€๐ตโˆˆย B,๐ตโ‰ โˆ…
  • โˆ€๐ต1,โ€ฆ,๐ต๐‘›โˆˆย B,โˆƒ๐ตโˆˆย B,๐ตโŠ‚๐ต1โˆฉโ‹ฏโˆฉ๐ต๐‘›
  • (Meaning: Non-empty before converging to the limit. If the number of B elements is infinite, then the finite intersection controls the direction of convergence, although possibly โˆ…=โ‹‚ย B. If Bย ={๐ต1,โ€ฆ,๐ต๐‘›} has a finite number of elements, then โˆ…โ‰ ๐ต1โˆฉโ‹ฏโˆฉ๐ต๐‘›โˆˆย B)

Example ๐‘‹=โ„•, net Bย ={๐‘›,๐‘›+1,โ‹ฏ}๐‘›=0..โˆž

Point net or net containing point ๐‘ฅโˆˆ๐‘‹ Bย (๐‘ฅ)โ‰”โˆ€๐ตโˆˆย Bย (๐‘ฅ),๐‘ฅโˆˆ๐ต

Net B is finer than Bโ€ฒ := โˆ€๐ตโ€ฒโˆˆย Bโ€ฒ,โˆƒ๐ตโˆˆย B,๐ตโŠ‚๐ตโ€ฒ
And this implies โ‹‚ย Bย โŠ‚โ‹‚ย Bโ€ฒ

net-same-limit_(tag) B,Bโ€ฒ have the same limit := are mutually finer than each other

Not all nets with the same limit are useful. Set theoretically, โˆช can be used to construct new nets with the same limit, but there is a lot of redundancy

Any net can be supplemented with all finite intersections {๐ต1โˆฉโ‹ฏโˆฉ๐ต๐‘›:๐‘›โˆˆโ„•,๐ต1,โ€ฆ,๐ต๐‘›โˆˆย B} to become a new net, while maintaining the same limit

hom-limit_(tag) Limit homomorphism between nets :=

๐‘“:๐‘‹โ†’๐‘Œ. Net ๐‘“(B๐‘‹) is finer than B๐‘Œ

โˆ€๐ต๐‘Œโˆˆย Bย ๐‘Œโˆƒ๐ต๐‘‹โˆˆย Bย ๐‘‹๐‘“(๐ต๐‘‹)โŠ‚๐ต๐‘Œย orย ๐ต๐‘‹โŠ‚๐‘“โˆ’1(๐ต๐‘Œ)

โŠ‚ Describing it with points is โˆ€๐‘Žโˆˆ๐ต๐‘‹,๐‘“(๐‘Ž)โˆˆ๐ต๐‘Œ

Example

  • Sequence โ„•โ†’โ„ converges limย ๐‘›โ†’โˆž๐‘Ž๐‘›=๐‘Ž

Using all intervals containing ๐‘Ž, Bย โ„=ย Iย (๐‘Ž) and Bย โ„•={๐‘›,๐‘›+1,โ‹ฏ}๐‘›=0..โˆž, then โ„•โ†’โ„ is a limit homomorphism

โˆ€๐ผ(๐‘Ž)โˆˆย Iย (๐‘Ž)โˆƒ{๐‘›,๐‘›+1,โ‹ฏ}โˆˆย Bย โ„•{๐‘Ž๐‘›,๐‘Ž๐‘›+1,โ‹ฏ}โŠ‚๐ผ(๐‘Ž)
  • โ„โ†’โ„ Function limit

let ๐‘“:โ„โ†’โ„,๐‘“(๐‘ฅ)=๐‘ฆ, from Iย (๐‘ฅ) to Iย (๐‘ฆ)

โˆ€๐ผ๐‘ฆโˆˆย Iย (๐‘ฆ)โˆƒ๐ผ๐‘ฅโˆˆย Iย (๐‘ฅ)๐‘“(๐ผ๐‘ฅ)โŠ‚๐ผ๐‘ฆ