1. notice
  2. English
  3. 1. feature
  4. logic-topic
  5. 2. logic
  6. 3. set-theory
  7. 4. map
  8. 5. order
  9. 6. combinatorics
  10. calculus
  11. 7. real-numbers
  12. 8. limit-sequence
  13. 9. โ„^n
  14. 10. Euclidean-space
  15. 11. Minkowski-space
  16. 12. polynomial
  17. 13. analytic-Euclidean
  18. 14. analytic-Minkowski
  19. 15. analytic-struct-operation
  20. 16. ordinary-differential-equation
  21. 17. volume
  22. 18. integral
  23. 19. divergence
  24. 20. limit-net
  25. 21. compact
  26. 22. connected
  27. 23. topology-struct-operation
  28. 24. exponential
  29. 25. angle
  30. geometry
  31. 26. manifold
  32. 27. metric
  33. 28. metric-connection
  34. 29. geodesic-derivative
  35. 30. curvature-of-metric
  36. 31. Einstein-metric
  37. 32. constant-sectional-curvature
  38. 33. simple-symmetric-space
  39. 34. principal-bundle
  40. 35. group-action
  41. 36. stereographic-projection
  42. 37. Hopf-bundle
  43. field-theory
  44. 38. point-particle-non-relativity
  45. 39. point-particle-relativity
  46. 40. scalar-field
  47. 41. scalar-field-current
  48. 42. scalar-field-non-relativity
  49. 43. projective-lightcone
  50. 44. spacetime-momentum-spinor-representation
  51. 45. Lorentz-group
  52. 46. spinor-field
  53. 47. spinor-field-current
  54. 48. electromagnetic-field
  55. 49. Laplacian-of-tensor-field
  56. 50. Einstein-metric
  57. 51. interaction
  58. 52. harmonic-oscillator-quantization
  59. 53. spinor-field-misc
  60. 54. reference
  61. ไธญๆ–‡
  62. 55. notice
  63. 56. feature
  64. ้€ป่พ‘
  65. 57. ้€ป่พ‘
  66. 58. ้›†ๅˆ่ฎบ
  67. 59. ๆ˜ ๅฐ„
  68. 60. ๅบ
  69. 61. ็ป„ๅˆ
  70. ๅพฎ็งฏๅˆ†
  71. 62. ๅฎžๆ•ฐ
  72. 63. ๆ•ฐๅˆ—ๆž้™
  73. 64. โ„^n
  74. 65. Euclidean ็ฉบ้—ด
  75. 66. Minkowski ็ฉบ้—ด
  76. 67. ๅคš้กนๅผ
  77. 68. ่งฃๆž (Euclidean)
  78. 69. ่งฃๆž (Minkowski)
  79. 70. ่งฃๆž struct ็š„ๆ“ไฝœ
  80. 71. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  81. 72. ไฝ“็งฏ
  82. 73. ็งฏๅˆ†
  83. 74. ๆ•ฃๅบฆ
  84. 75. ็ฝ‘ๆž้™
  85. 76. ็ดง่‡ด
  86. 77. ่ฟž้€š
  87. 78. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  88. 79. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  89. 80. ่ง’ๅบฆ
  90. ๅ‡ ไฝ•
  91. 81. ๆตๅฝข
  92. 82. ๅบฆ่ง„
  93. 83. ๅบฆ่ง„็š„่”็ปœ
  94. 84. Levi-Civita ๅฏผๆ•ฐ
  95. 85. ๅบฆ่ง„็š„ๆ›ฒ็އ
  96. 86. Einstein ๅบฆ่ง„
  97. 87. ๅธธๆˆช้ขๆ›ฒ็އ
  98. 88. simple-symmetric-space
  99. 89. ไธปไธ›
  100. 90. ็พคไฝœ็”จ
  101. 91. ็ƒๆžๆŠ•ๅฝฑ
  102. 92. Hopf ไธ›
  103. ๅœบ่ฎบ
  104. 93. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  105. 94. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  106. 95. ็บฏ้‡ๅœบ
  107. 96. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  108. 97. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  109. 98. ๅ…‰้”ฅๅฐ„ๅฝฑ
  110. 99. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  111. 100. Lorentz ็พค
  112. 101. ๆ—‹้‡ๅœบ
  113. 102. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  114. 103. ็”ต็ฃๅœบ
  115. 104. ๅผ ้‡ๅœบ็š„ Laplacian
  116. 105. Einstein ๅบฆ่ง„
  117. 106. ็›ธไบ’ไฝœ็”จ
  118. 107. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  119. 108. ๆ—‹้‡ๅœบๆ‚้กน
  120. 109. ๅ‚่€ƒ

note-math

The problem of defining the derivative of a vector field in the direction

For a vector field near , in the direction, try to calculate the derivative in coordinates

However, the difference operation is not linearly compatible with coordinate changes of general diffeomorphisms.

But in a metric-manifold, there are special coordinates โ€” geodesic coordinates. The transformation method for different geodesic coordinates at is , which is linear.

[geodesic-derivative] Geodesic derivative alias [Levi-Civita-derivative] Levi-Civita derivative :=

In geodesic coordinates at point , the derivative at point ,

It is also possible to take the derivative of a tensor field . According to the scalar multiplication associated with the tensor structure, calculations can be performed using the product-rule Example

Prop . Proof In geodesic coordinates

Prop or

Prop The covariant derivative is compatible with the metric-dual e.g. since

Other coordinates may be needed to compute geodesic coordinates, and thus other coordinates may also be needed to express the geodesic derivative.

[geodesic-derivative-in-general-coordinate]

Compute geodesic coordinates using general coordinates , then in coordinates , the geodesic derivative is

Using connection transformation

==>

Use . Substitute into the calculation of

The tangent space linearly transforms to by , but keeps in coordinate , but keep in coordinate

Or written as, in general coordinates, geodesic derivative

For coordinate-frame

Is there a more intuitive explanation, rather than directly using the transformation of connection?

If we only consider linear compatibility, then there are many linear connections, and the one that coincides with the geodesic-derivative is the metric-connection

[geodesic-derivative-of-co-vector] Prop For co-vector field

Proof

Question Similar to the case of vector fields. Use the transformation and the product-rule

For co-vector coordinate-frame

[parallel-transport-metric-connection]

Parallel transport as "zero rate of change along the curve" or where

is an ODE

According to calculation (?), covariant derivative can be recovered from parallel transport + difference quotient

[orthonormal-frame]

Parallel transport of metric-connection preserves the metric

Can be used to construct orthonormal frames

It can be proven that a manifold metric uniquely corresponds to an principal-bundle structure on the manifold

But are there more specific and operational calculation results? Regarding calculating orthonormal frames using parallel transport in geodesic coordinates

A canonical orthonormal frame may be used for simplified some of calculations of spinors on curved manifolds, e.g. Pauli-matrix