1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

The problem of defining the derivative of a vector field ๐‘Œ in the direction ๐‘‹

For a vector field ๐‘Œ near ๐‘, in the ๐‘‹ direction, try to calculate the derivative in coordinates โˆ‚๐‘Œโˆ‚๐‘‹=ย limย ๐‘กโ†’01๐‘ก(๐‘Œ(๐‘+๐‘ก๐‘‹)โˆ’๐‘Œ(๐‘))

However, the #link(<difference-polynomial>)[difference] operation is not linearly compatible with coordinate changes of general diffeomorphisms.

But in a metric-manifold, there are special coordinates โ€” #link(<geodesic-coordinate>)[geodesic coordinates]. The transformation method for different geodesic coordinates at ๐‘ is SO, which is linear.

geodesic-derivative_(tag) Geodesic derivative alias Levi-Civita-derivative_(tag) Levi-Civita derivative :=

In geodesic coordinates at point ๐‘, the derivative at point ๐‘, โˆ‡๐‘‹๐‘Œโ‰”โˆ‚๐‘Œโˆ‚๐‘‹

It is also possible to take the derivative of a #link(<tensor>)[] field โˆ‡๐‘‹๐‘‡. According to the scalar multiplication associated with the tensor structure, calculations can be performed using the #link(<Leibniz-law>)[product-rule] Example โˆ‡๐‘‹(๐‘ŒโŠ—๐‘)=(โˆ‡๐‘‹๐‘Œ)โŠ—๐‘+๐‘ŒโŠ—(โˆ‡๐‘‹๐‘)

Prop โˆ‡๐‘”=0. Proof In geodesic coordinates โˆ‚๐‘”(๐‘)=0

Prop โˆ‡ย Volย =0 or โˆ‡(|detย ๐‘”|12๐‘‘๐‘ฅ1โˆงโ‹ฏโˆง๐‘‘๐‘ฅ๐‘›)=0

Prop The covariant derivative is compatible with the metric-dual e.g. โˆ‡๐‘”๐‘ฃ=๐‘”โˆ‡๐‘ฃ since โˆ‡๐‘”=0

Other coordinates may be needed to compute geodesic coordinates, and thus other coordinates may also be needed to express the geodesic derivative.

geodesic-derivative-in-general-coordinate_(tag)

Compute geodesic coordinates ๐‘ฆ using general coordinates ๐‘ฅ, then in coordinates ๐‘ฆ, the geodesic derivative is

โˆ‡๐‘‹๐‘Œ(๐‘ฅ)=โˆ‚๐‘ฅโˆ‚๐‘ฆ(๐‘ฆ)โ‹…โˆ‚๐‘Œโˆ‚๐‘‹(๐‘ฆ)=โˆ‚โˆ‚๐‘‹(โˆ‚๐‘ฅโˆ‚๐‘ฆโ‹…๐‘Œ)โˆ’โˆ‚โˆ‚๐‘‹(โˆ‚๐‘ฅโˆ‚๐‘ฆ)โ‹…๐‘Œย byย product-rule

Using #link(<connection-transformation>)[connection transformation]

0=ฮ“(๐‘ฆ)=โˆ‚๐‘ฆโˆ‚๐‘ฅโ‹…ฮ“(๐‘ฅ)โ‹…โˆ‚๐‘ฅโˆ‚๐‘ฆ+โˆ‚๐‘ฆโˆ‚๐‘ฅโ‹…โˆ‚โˆ‚๐‘ฆ(โˆ‚๐‘ฅโˆ‚๐‘ฆ)

==> โˆ‚โˆ‚๐‘ฆ(โˆ‚๐‘ฅโˆ‚๐‘ฆ)=โˆ’ฮ“(๐‘ฅ)โ‹…๐‘‘๐‘ฅ๐‘‘๐‘ฆ

Use โˆ‚โˆ‚๐‘‹(โˆ‚๐‘ฅโˆ‚๐‘ฆ)=โˆ‚โˆ‚๐‘ฆ(๐‘‹)(โˆ‚๐‘ฅโˆ‚๐‘ฆ). Substitute into the calculation of โˆ‡๐‘‹๐‘Œ(๐‘ฆ)

โˆ‡๐‘‹๐‘Œ(๐‘ฆ)=โˆ‚โˆ‚๐‘‹(โˆ‚๐‘ฅโˆ‚๐‘ฆโ‹…๐‘Œ)+๐‘‹โŠบโ‹…ฮ“(๐‘ฅ)โ‹…โˆ‚๐‘ฅโˆ‚๐‘ฆโ‹…๐‘Œ

The ๐‘ tangent space linearly transforms โˆ‡๐‘‹๐‘Œ(๐‘ฆ) to โˆ‡๐‘‹๐‘Œ(๐‘ฅ) by โˆ‚๐‘ฅโˆ‚๐‘ฆ(๐‘ฆ), but keeps in coordinate ๐‘ฅ, but keep ๐‘‹,๐‘Œ in coordinate ๐‘ฆ

โˆ‡๐‘‹๐‘Œ(๐‘ฅ)=โˆ‚โˆ‚(โˆ‚๐‘ฅโˆ‚๐‘ฆ(๐‘ฆ)โ‹…๐‘‹(๐‘ฆ))(โˆ‚๐‘ฅโˆ‚๐‘ฆ(๐‘ฆ)โ‹…๐‘Œ(๐‘ฆ))+(โˆ‚๐‘ฅโˆ‚๐‘ฆ(๐‘ฆ)โ‹…๐‘‹(๐‘ฆ))โŠบโ‹…ฮ“(๐‘ฅ)โ‹…โˆ‚๐‘ฅโˆ‚๐‘ฆ(๐‘ฆ)โ‹…๐‘Œ(๐‘ฆ)=โˆ‚โˆ‚(๐‘‹(๐‘ฅ))๐‘Œ(๐‘ฅ)+๐‘‹(๐‘ฅ)โŠบโ‹…ฮ“(๐‘ฅ)โ‹…๐‘Œ(๐‘ฅ)

Or written as, in general coordinates, geodesic derivative

โˆ‡=โˆ‚+ฮ“

For coordinate-frame

โˆ‡โˆ‚โˆ‚๐‘ฅ๐‘–โˆ‚โˆ‚๐‘ฅ๐‘–โ€ฒ=ฮ“๐‘–๐‘–โ€ฒ๐‘—โˆ‚โˆ‚๐‘ฅ๐‘—

Is there a more intuitive explanation, rather than directly using the transformation of connection?

If we only consider linear compatibility, then there are many #link(<principal-bundle-connection>)[linear connections], and the one that coincides with the geodesic-derivative is the metric-connection

geodesic-derivative-of-co-vector_(tag) Prop For co-vector field

โˆ‡=โˆ‚โˆ’ฮ“

Proof

Question Similar to the case of vector fields. Use the transformation ๐›ผ(๐‘ฅ)=๐›ผ(๐‘ฆ)โ‹…โˆ‚๐‘ฅโˆ‚๐‘ฆ and the product-rule โˆ‚โˆ‚๐‘‹(๐›ผโ‹…โˆ‚๐‘ฅโˆ‚๐‘ฆโ‹…๐‘Œ)=โˆ‚๐›ผโˆ‚๐‘‹โ‹…(โˆ‚๐‘ฅโˆ‚๐‘ฆโ‹…๐‘Œ)+๐›ผโ‹…โˆ‚โˆ‚๐‘‹(โˆ‚๐‘ฅโˆ‚๐‘ฆโ‹…๐‘Œ)

For co-vector coordinate-frame

โˆ‡โˆ‚โˆ‚๐‘ฅ๐‘–๐‘‘๐‘ฅ๐‘–โ€ฒ=โˆ’ฮ“๐‘–๐‘—๐‘–โ€ฒ๐‘‘๐‘ฅ๐‘—

parallel-transport-metric-connection_(tag)

Parallel transport as "zero rate of change along the curve" โˆ‡๐‘ฅฬ‡๐‘‹=0 or (โˆ‚+ฮ“)๐‘ฅฬ‡๐‘‹=0 where ๐‘‹=๐‘‹(๐‘ฅ(๐‘ก))

โˆ‡๐‘ฅฬ‡๐‘‹=0 is an ODE

According to calculation (?), covariant derivative can be recovered from parallel transport + difference quotient

orthonormal-frame_(tag)

Parallel transport of metric-connection preserves the metric

Can be used to construct orthonormal frames

It can be proven that a manifold metric uniquely corresponds to an SO principal-bundle structure on the manifold

But are there more specific and operational calculation results? Regarding calculating orthonormal frames using parallel transport in geodesic coordinates

A canonical orthonormal frame may be used for simplified some of calculations of spinors on curved manifolds, e.g. Pauli-matrix ๐œŽ0,1,2,3