1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

polar-decomposition-of-Lorentz-group_(tag) polar decomposition SO(1,3) to rotation and boost (ref-2, Vol.1, p.165)

let ๐ด=(๐œ๐‘ฃโŠบ๐‘ข๐‘Ž)โˆˆSO(1,3) where ๐œโˆˆโ„,๐‘ข,๐‘ฃโˆˆโ„1,3,๐‘ŽโˆˆMatrix(3,โ„)

๐ด=(1๐‘…)((1+๐‘ฃโŠบ๐‘ฃ)12๐‘ฃโŠบ๐‘ฃ(๐Ÿ™+๐‘ฃ๐‘ฃโŠบ)12)

(ไฝฟ็”จ ๐ดโˆˆSO(1,3)โŸน๐ดโŠบ๐œ‚๐ด=๐œ‚=๐ด๐œ‚๐ดโŠบ ๅ’Œ polar decomposition of positive definite symmetric matrix)

where

๐‘Ž=๐‘…(๐‘ŽโŠบ๐‘Ž)12๐‘ŽโŠบ๐‘Ž=๐Ÿ™+๐‘ฃ๐‘ฃโŠบ๐œ2=1+๐‘ฃโŠบ๐‘ฃ=1+๐‘ขโŠบ๐‘ข๐‘Ž๐‘ฃ=๐œ๐‘ข

๐ต(๐‘ฃ)=((1+๐‘ฃโŠบ๐‘ฃ)12๐‘ฃโŠบ๐‘ฃ(๐Ÿ™+๐‘ฃ๐‘ฃโŠบ)12) is boost, map (1,0) to (๐œ,๐‘ฃ)

๐œ=(1+๐‘ฃโŠบ๐‘ฃ)12, ๐Ÿ™+๐‘ฃ๐‘ฃโŠบ=๐‘ŽโŠบ๐‘Ž have diagonal form (1,โ€ฆ,1,๐‘’๐›ผ,๐‘’โˆ’๐›ผ) where ๐›ผ=ย coshย โˆ’1๐œ

๐ต(๐‘ฃ)=((1+๐‘ฃโŠบ๐‘ฃ)12๐‘ฃโŠบ๐‘ฃ(๐Ÿ™+๐‘ฃ๐‘ฃโŠบ)12)=ย expย (๐‘โŠบ๐‘) with sinhย |๐‘||๐‘|๐‘=๐‘ฃ,๐œ=ย coshย ๐‘

Euler-angle-Lorentz-group_(tag) Question

  • rotation

ไฝฟ็”จ ๐‘ฅ1,๐‘ฅ2 ่ฝด็š„ๆ—‹่ฝฌๆฅ็”Ÿๆˆ SO(3)

in SO(3), ๐œƒโˆˆ[0,๐œ‹],๐œƒ1,๐œƒ2โˆˆ[0,2๐œ‹]

๐‘…(๐œƒ,๐œƒ1,๐œƒ2)=(1cosย ๐œƒ1โˆ’ย sinย ๐œƒ1sinย ๐œƒ1cosย ๐œƒ1)โ‹…(cosย ๐œƒโˆ’ย sinย ๐œƒ1sinย ๐œƒcosย ๐œƒ)โ‹…(1cosย ๐œƒ2โˆ’ย sinย ๐œƒ2sinย ๐œƒ2cosย ๐œƒ2)

in SU(2)

๐‘…(๐œƒ,๐œƒ1,๐œƒ2)=(๐‘’12๐œƒ1ย i๐‘’โˆ’12๐œƒ1ย i)โ‹…(cosย 12๐œƒiย ย sinย 12๐œƒiย ย sinย 12๐œƒcosย 12๐œƒ)โ‹…(๐‘’12๐œƒ2ย i๐‘’โˆ’12๐œƒ2ย i)=(cosย 12๐œƒโ‹…๐‘’12(๐œƒ1+๐œƒ2)ย iiย ย sinย 12๐œƒโ‹…๐‘’12(๐œƒ1โˆ’๐œƒ2)ย iiย ย sinย 12๐œƒโ‹…๐‘’โˆ’12(๐œƒ1โˆ’๐œƒ2)ย icosย 12๐œƒโ‹…๐‘’โˆ’12(๐œƒ1+๐œƒ2)ย i)
  • boost

ไฝฟ็”จ ๐‘ฅ1,๐‘ฅ2 ่ฝด็š„ boost

in SO(1,3)

๐ต(๐œ‘,๐œ‘1,๐œ‘2)=(coshย ๐œ‘1sinhย ๐œ‘1sinhย ๐œ‘1coshย ๐œ‘111)โ‹…(coshย ๐œ‘sinhย ๐œ‘1sinhย ๐œ‘coshย ๐œ‘1)โ‹…(coshย ๐œ‘2sinhย ๐œ‘2sinhย ๐œ‘2coshย ๐œ‘211)

in SL(2,โ„‚)

๐ต(๐œ‘,๐œ‘1,๐œ‘2)=(๐‘’12๐œ‘1๐‘’โˆ’12๐œ‘1)โ‹…(coshย 12๐œ‘sinhย 12๐œ‘sinhย 12๐œ‘coshย 12๐œ‘)โ‹…(๐‘’12๐œ‘2๐‘’โˆ’12๐œ‘2)=(coshย 12๐œ‘โ‹…๐‘’12(๐œ‘1+๐œ‘2)sinhย 12๐œ‘โ‹…๐‘’12(๐œ‘1โˆ’๐œ‘2)sinhย 12๐œ‘โ‹…๐‘’โˆ’12(๐œ‘1โˆ’๐œ‘2)coshย 12๐œ‘โ‹…๐‘’โˆ’12(๐œ‘1+๐œ‘2))

Lorentz-group-Lie-bracket_(tag) so(1,3) with boost and rotation decomposition ๐‘+๐‘Ÿ=(๐œ‘1๐‘1+๐œ‘2๐‘2+๐œ‘3๐‘3)+(๐œƒ1๐‘Ÿ1+๐œƒ2๐‘Ÿ2+๐œƒ3๐‘Ÿ3) and Lie-bracket

๐‘ร—๐‘=โˆ’๐‘Ÿ๐‘ร—๐‘Ÿ=๐‘๐‘Ÿร—๐‘=๐‘๐‘Ÿร—๐‘Ÿ=๐‘Ÿ๐‘โ‹…๐‘Ÿ=๐‘Ÿโ‹…๐‘

ๅ…ถไธญ ร— ๆจกไปฟ โ„3 cross product. Example ๐‘ร—๐‘=([๐‘2,๐‘3][๐‘3,๐‘1][๐‘1,๐‘2])

ๅ…ถไธญ โ‹… ๆจกไปฟ โ„3 dot product. Example ๐‘โ‹…๐‘Ÿ=๐‘Ÿโ‹…๐‘ ==> ๐‘1๐‘Ÿ1=๐‘Ÿ1๐‘1 or [๐‘1,๐‘Ÿ1]=0

ๅ†™ไธบๆจกไปฟ โ„‚3 cross product

12(๐‘Ÿ+๐‘ย i)ร—12(๐‘Ÿ+๐‘ย i)=12ย iย (๐‘Ÿ+๐‘ย i)(๐‘Ÿ+๐‘ย i)ร—(๐‘Ÿโˆ’๐‘ย i)=0(๐‘Ÿ+๐‘ย i)โ‹…(๐‘Ÿโˆ’๐‘ย i)=๐‘Ÿ2+๐‘2

so(1,3) have form (0๐‘โŠบ๐‘๐‘Ÿ) where ๐‘Ÿโˆˆso(3),๐‘โˆˆโ„3 (ref-2, Vol.1, p.180)

Lorentz-group-orbit-isotropy_(tag)

SO(1,3) or SL(2,โ„‚) act on โ„1,3

orbit type isotropy-group type
|๐‘ฅ|2=1 SO(3) or SU(2,โ„‚)
|๐‘ฅ|2=โˆ’1 SO(1,2) or SL(2,โ„)
|๐‘ฅ|2=0 SO(2)โ‹Šโ„2
{0} SO(1,3) or SL(2,โ„‚)

isotropy-on-lightcone_(tag) Prop SO(1,3) ไฝœ็”จไบŽ lightcone ็ฑปไผผไบŽ SO(2)โ‹Šโ„2 (ๆฐๅฅฝๆ˜ฏ โ„2 Euclidean ไปฟๅฐ„็พค)

Proof ไฝฟ็”จ #link(<spacetime-momentum-aciton-spinor-representation>)[spinor ๆŠ€ๆœฏ]

Prop SL(2,โ„‚) ไฝœ็”จๅœจ lightcone (ไธๆ˜ฏ projective-lightcone), #link(<isotropy>)[] ็ฑปไผผไบŽ Uย (1)โ‹Šโ„‚

SL(2,โ„‚) ๆ˜ฏ #link(<action-surjective>)[ๆปกๅฐ„ไฝœ็”จ], orbit ๆ•ฐ 1, ๆ‰€ไปฅ่ฎก็ฎ— isotropy #link(<isotropy-in-same-orbit-is-isom>)[ๅช้œ€่ฆ่€ƒ่™‘] ไธ€็‚น

ไฝฟ็”จๅ…‰้”ฅๅฐ„ๅฝฑไธŠ็š„็‚น ๐‘=(1100)โ†”๐‘ย spinย =(2 )โˆˆโ„1,3, ่ฎก็ฎ— isotropy ๐ด๐‘ย spinย ๐ดโ€ =๐‘ย spin, where ๐ด๐‘ย spinย ๐ดโ€ =(2๐‘Ž๐‘Žโˆ—2๐‘Ž๐‘โˆ—2๐‘Žโˆ—๐‘2๐‘๐‘โˆ—)

  • ๐‘=0,|๐‘Ž|2=1 ๆ˜ฏๅ…‰้”ฅ isotropy
  • ๐‘=0,|๐‘Ž|2โˆˆโ„ ๆ˜ฏๅฏน (1100) ็š„ไผธ็ผฉ
  • SU(2) ๆ˜ฏๅฏน (100)โˆˆโ„3 ็š„็ฉบ้—ดๆ—‹่ฝฌ. ่ƒฝ็ป™ๅ‡บๆ•ดไธชๅ…‰้”ฅๆˆช้ข ๐•Š2

==> isotropy ๐ด=(๐‘’๐œƒ๐‘๐‘’โˆ’๐œƒ) where ๐œƒโˆˆIm(โ„‚)

็ฑปไผผไบŽ #link(<isotropy-on-projective-lightcone>)[] ็š„่ฎก็ฎ—, ๆญคๅค„ๅฐ†็ฑปไผผไบŽ Uย (1)โ‹Šโ„‚

isotropy-on-lightcone-intuition_(tag) isotropy-group of orbit lightcone ็š„็›ด่ง‚. ๆ นๆฎ

(๐‘’12๐œƒย i0๐‘’โˆ’12๐œƒย i)(1๐‘1)(๐‘’12๐œƒย i0๐‘’โˆ’12๐œƒย i)=(๐‘’๐œƒย i๐‘๐‘’โˆ’๐œƒย i)

ๅˆ†ๅผ€่ฎจ่ฎบไธค็งๆƒ…ๅ†ต

  • (๐‘’12๐œƒย i0๐‘’โˆ’12๐œƒย i). is rotation in ๐‘1

  • (1๐‘1)

let so(1,3) with boost and rotation decomposition ๐‘+๐‘Ÿ=(๐œ‘1๐‘1+๐œ‘2๐‘2+๐œ‘3๐‘3)+(๐œƒ1๐‘Ÿ1+๐œƒ2๐‘Ÿ2+๐œƒ3๐‘Ÿ3) (not the ๐‘ in (๐‘’๐œƒย i๐‘๐‘’โˆ’๐œƒย i))

็บฟๆ€งๅŒๆž„ๅˆฐๆ–ฐ็š„ๅŸบ

๐‘1,๐‘Ÿ1๐‘2+๐‘Ÿ3,๐‘3+๐‘Ÿ2๐‘2โˆ’๐‘Ÿ3,๐‘3โˆ’๐‘Ÿ2

where

  • ๐‘Ÿ3 is rotation in ๐‘1,๐‘2
  • ๐‘2 is boost in ๐‘0,๐‘2
  • ๐‘2โˆ’๐‘Ÿ3 and ๐‘3โˆ’๐‘Ÿ2 ๆ˜ฏ lightcone coordinate ๐‘0ยฑ๐‘1 ็ฑปไผผ็‰ฉ, ไฟๆŒ (1100)

ๆˆ–่€…ๅ†™ไธบ

๐‘1,๐‘Ÿ1๐‘€+๐‘€โˆ’

where ๐‘1,๐‘€+ ๅฐ†ไผšๆ”นๅ˜ (1100), ๐‘Ÿ1,๐‘€โˆ’ ๅˆ™ๅ›บๅฎš

ไบŒ็ปด Lie algebra ๐‘€โˆ’ is commutative, ๅฏนๅบ” Uย (1)โ‹Šโ„‚ ไธญ็š„ ๐‘โˆˆโ„‚ or (1๐‘1)

ๅœจๅ…‰้”ฅไธŠ (ๅ›พ)

  • ไธ€่ˆฌ ๐‘ ็”ŸๆˆๅŒๆ›ฒๅž‹ orbit
  • ไธ€่ˆฌ ๐‘Ÿ ็”Ÿๆˆๆคญๅœ†ๅž‹ orbit
  • ๐‘€+ ๅฏไปฅๆŽจๅนฟๅˆฐไธ€่ˆฌ็š„ lightcone ็ป„ๅˆ e.g. ๐‘0ยฑ๐‘2, ๅฐ†็”ŸๆˆๆŠ›็‰ฉๅž‹ orbit

(1๐‘1) ไฝœ็”จ็š„ๅ…ทไฝ“่ฎก็ฎ—

let ๐‘ง=๐‘0+๐‘1,๐‘งโˆ—โ€ฒ=๐‘0โˆ’๐‘1,๐‘ค=๐‘2+๐‘3ย i,๐‘คโˆ—=๐‘2โˆ’๐‘3ย i. metric will be |๐‘ง|โ€ฒ2+|๐‘ค|2=๐‘ง๐‘งโˆ—โ€ฒ+๐‘ค๐‘คโˆ—

(1๐‘1)(๐‘ง๐‘ค๐‘คโˆ—๐‘งโˆ—โ€ฒ)(1๐‘โˆ—1)=(๐‘ง+|๐‘|2๐‘งโˆ—โ€ฒ+2Re(๐‘๐‘ค)๐‘ค+๐‘๐‘งโˆ—โ€ฒ๐‘คโˆ—+๐‘โˆ—๐‘งโˆ—โ€ฒ๐‘งโˆ—โ€ฒ)

in โ„1,3

(๐‘0+12|๐‘|2(๐‘0โˆ’๐‘1)+Re(๐‘(๐‘2+๐‘3ย i))๐‘1+12|๐‘|2(๐‘0โˆ’๐‘1)+Re(๐‘(๐‘2+๐‘3ย i))๐‘2+Re(๐‘(๐‘0โˆ’๐‘1))๐‘3+Im(๐‘(๐‘0โˆ’๐‘1)))