polar-decomposition-of-Lorentz-group
_(tag) polar decomposition to rotation and boost (ref-2, Vol.1, p.165)
let where
(ไฝฟ็จ ๅ polar decomposition of positive definite symmetric matrix)
where
is boost, map to
, have diagonal form where
with
Euler-angle-Lorentz-group
_(tag) Question
ไฝฟ็จ ่ฝด็ๆ่ฝฌๆฅ็ๆ
in ,
in
ไฝฟ็จ ่ฝด็ boost
in
in
Lorentz-group-Lie-bracket
_(tag) with boost and rotation decomposition and Lie-bracket
ๅ
ถไธญ ๆจกไปฟ cross product. Example
ๅ
ถไธญ ๆจกไปฟ dot product. Example ==> or
ๅไธบๆจกไปฟ cross product
have form where (ref-2, Vol.1, p.180)
Lorentz-group-orbit-isotropy
_(tag)
or act on
orbit type |
isotropy-group type |
|
or |
|
or |
|
|
|
or |
isotropy-on-lightcone
_(tag) Prop ไฝ็จไบ lightcone ็ฑปไผผไบ (ๆฐๅฅฝๆฏ Euclidean ไปฟๅฐ็พค)
Proof ไฝฟ็จ #link(<spacetime-momentum-aciton-spinor-representation>)[spinor ๆๆฏ]
Prop ไฝ็จๅจ lightcone (ไธๆฏ projective-lightcone), #link(<isotropy>)[]
็ฑปไผผไบ
ๆฏ #link(<action-surjective>)[ๆปกๅฐไฝ็จ]
, orbit ๆฐ , ๆไปฅ่ฎก็ฎ isotropy #link(<isotropy-in-same-orbit-is-isom>)[ๅช้่ฆ่่]
ไธ็น
ไฝฟ็จๅ
้ฅๅฐๅฝฑไธ็็น , ่ฎก็ฎ isotropy , where
- ๆฏๅ
้ฅ isotropy
- ๆฏๅฏน ็ไผธ็ผฉ
- ๆฏๅฏน ็็ฉบ้ดๆ่ฝฌ. ่ฝ็ปๅบๆดไธชๅ
้ฅๆช้ข
==> isotropy where
็ฑปไผผไบ #link(<isotropy-on-projective-lightcone>)[]
็่ฎก็ฎ, ๆญคๅคๅฐ็ฑปไผผไบ
isotropy-on-lightcone-intuition
_(tag) isotropy-group of orbit lightcone ็็ด่ง. ๆ นๆฎ
ๅๅผ่ฎจ่ฎบไธค็งๆ
ๅต
let with boost and rotation decomposition (not the in )
็บฟๆงๅๆๅฐๆฐ็ๅบ
where
- is rotation in
- is boost in
- and ๆฏ lightcone coordinate ็ฑปไผผ็ฉ, ไฟๆ
ๆ่
ๅไธบ
where ๅฐไผๆนๅ , ๅๅบๅฎ
ไบ็ปด Lie algebra is commutative, ๅฏนๅบ ไธญ็ or
ๅจๅ
้ฅไธ (ๅพ)
- ไธ่ฌ ็ๆๅๆฒๅ orbit
- ไธ่ฌ ็ๆๆคญๅๅ orbit
- ๅฏไปฅๆจๅนฟๅฐไธ่ฌ็ lightcone ็ปๅ e.g. , ๅฐ็ๆๆ็ฉๅ orbit
ไฝ็จ็ๅ
ทไฝ่ฎก็ฎ
let . metric will be
in