1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

Example #link(<interval>)[] #link(<best-interval-decomposition>)[]

connected_(tag) Connected or limit point connected := limit point set decomposition is no longer possible or closed set decomposition is no longer possible

๐‘‹=โจ†๐‘–โˆˆ๐ผ๐ด๐‘– with ๐ด๐‘– closed ==> |๐ผ|=1

Intuitively speaking, connected = cannot give any substantial decomposition. For any set decomposition ๐‘‹=โจ†๐ด๐‘–, from ๐‘‹=โ‹ƒ๐ดฬ„๐‘– + connected, each ๐ด๐‘– must be connected to some other ๐ด๐‘— after the limit point: โˆƒ๐‘—โ‰ ๐‘–,๐ดฬ„๐‘–โˆฉ๐ดฬ„๐‘—โ‰ โˆ…

Each ๐ด๐‘– of the closed set decomposition is an open set

Proof ๐ด๐‘–=๐‘‹โˆ–โ‹ƒ๐‘–โ€ฒโ‰ ๐‘–๐ด๐‘–โ€ฒยฏ

The definition of connected is equivalent to the version decomposed into two closed sets

๐‘‹=๐ดโŠ”๐ดโ€ฒ with ๐ด,๐ดโ€ฒ closed ==> (๐‘‹=๐ด)โˆจ(๐‘‹=๐ดโ€ฒ)

Proof Taking the limit of the decomposition yields โ‹๐‘–โˆˆ๐ผ๐‘‹=๐ด๐‘–

Connected subset := topological subspace connected

Example โ„ is connected. โ„ has connected and disconnected sets. Connected sets may not be Tโ„ closed sets

real-connected-is-interval_(tag) Connected sets of โ„ are intervals Proof by interval connected + optimal interval decomposition + number of intervals in optimal interval decomposition >1 is disconnected

connected-imply-closure-connected_(tag) ๐‘† is a connected set ==> ๐‘†ฬ„ is a connected set

Proof

๐‘†ฬ„ close ==> T๐‘†ฬ„ closed set is T๐‘‹ closed set

let closed set decomposition ๐‘†ฬ„=๐ดโŠ”๐ดโ€ฒ

T๐‘† closed set decomposition ๐‘†=(๐‘†โˆฉ๐ด)โŠ”(๐‘†โˆฉ๐ดโ€ฒ) and ๐‘† connected ==> one of them is an empty set, say ๐‘†โˆฉ๐ดโ€ฒ=โˆ… so ๐‘†โŠ‚๐ด

But ๐‘†ฬ„ is the smallest closed set containing ๐‘†, so ๐‘†ฬ„=๐ด and ๐ดโ€ฒ=โˆ…

๐‘†ฬ„ is not a connected set ==> ๐‘† is not a connected set

connected-componet_(tag) Connected component decomposition := Limit point set decomposition's limit ๐‘‹=ย limย โจ†๐‘–โˆˆ๐ผ๐ด๐‘–, such that each limit point set ๐ด๐‘– cannot be further decomposed i.e. connected

It is indeed the unique limit in the sense of #link(<net>)[net]. The net comes from the decomposition of ๐‘‹ into two closed sets, which can be taken as a common refinement decomposition + closed sets are closed under finite intersection.

๐‘† is T๐‘† connected or ๐‘† cannot be T๐‘† closed set decomposition and T๐‘‹ has closed set decomposition ๐ดโŠ”๐ดโ€ฒ ==> (๐‘†โŠ‚๐ด)โŠ•(๐‘†โŠ‚๐ดโ€ฒ)

Proof The closed set decomposition of T๐‘†, (๐‘†โˆฉ๐ด)โŠ”(๐‘†โˆฉ๐ดโ€ฒ), results in one of the sets being an empty set

๐ด is a limit point connected set ==> ๐ด is in the only one limit point connected component of ๐‘‹

Proof The points of ๐ด must be in ๐‘‹ and therefore in some connected component.

==> Even if ๐‘‹ is only decomposed into connected sets, it is already a connected component decomposition.

The union of connected sets ๐‘†๐‘– with a common point ๐‘ฅ, โ‹ƒ๐‘–โˆˆ๐ผ๐‘†๐‘–, is connected

recall #link(<topology-subspace>)[inheritance of subspace topology]. So connectedness is also inherited.

So we only need to deal with the case of โ‹ƒ๐‘–โˆˆ๐ผ๐‘†๐‘–=๐‘‹

Proof The connected sets containing ๐‘ฅ are all in the same connected component. This shows that โ‹ƒ๐‘–โˆˆ๐ผ๐‘†๐‘–=๐‘‹ has only one connected component, and is therefore connected.

A connected component is a maximal element of the โŠ‚ #link(<maximal-linear-order>)[maximal linear order] of a connected set family.

The image of a continuous function transmits connectedness.

The inverse-image of a continuous function transmits disconnectedness as contrapositive

Proof Closed set decomposition ๐‘Œ=๐ดโŠ”๐ดโ€ฒ ==> Closed set decomposition ๐‘‹=๐‘“โˆ’1(๐ด)โŠ”๐‘“โˆ’1(๐ดโ€ฒ)

==> mean-value-theorem-continuous_(tag) Intermediate Value Theorem for Continuous Functions. The image ๐‘“(๐‘‹) of a continuous function ๐‘“:๐‘‹โ†’โ„ is connected #link(<real-connected-is-interval>)[therefore] is an interval

If any two points in ๐‘Œ are in some connected subset ๐‘†, then ๐‘Œ is connected. Proof let ๐‘Œ=๐ดโŠ”๐ดโ€ฒ with ๐ด,๐ดโ€ฒ closed, prove that ๐ดโˆจ๐ดโ€ฒ=โˆ…. Or ๐‘Œ=โ‹ƒ๐‘ฆโˆˆ๐‘Œ๐‘†(๐‘ฆ0,๐‘ฆ) and the union of connected sets ๐‘†(๐‘ฆ0,๐‘ฆ) that have a common point ๐‘ฆ0 is connected

==> let ๐‘‹ be connected. If any two points in ๐‘Œ are in some connected image ๐‘“(๐‘‹) of a continuous function, then ๐‘Œ is connected

==> Path connected

product-topology-preserve-connected_(tag) #link(<product-topology>)[Product topology] preserves connectedness

Proof

Using the common point method + each ๐‘‹๐‘– connected ==> all "cross-shaped" subsets are connected

๐ถ๐‘—1,โ€ฆ,๐‘—๐‘›=โˆ๐‘–โˆˆ๐ผ{๐‘‹๐‘–ย ifย ๐‘–=๐‘—1,โ€ฆ,๐‘—๐‘›{๐‘ฅ๐‘–}ย else

Using the common point method again, the union of cross-shaped subsets ๐ถ=โ‹ƒ๐‘—1,โ€ฆ,๐‘—๐‘›๐ถ๐‘—1,โ€ฆ,๐‘—๐‘› forms a connected subset

๐ถฬ„=โˆ๐‘–โˆˆ๐ผ๐‘‹๐‘– and #link(<connected-imply-closure-connected>)[] ==> โˆ๐‘–โˆˆ๐ผ๐‘‹๐‘– connected

Proof of ๐ถฬ„=๐‘‹

Just need to prove that each set of the point-net system of โˆ๐‘–โˆˆ๐ผ๐‘‹๐‘– intersects some cross shape ๐ถ๐‘—1,โ€ฆ,๐‘—๐‘›

The set of the point-net system of โˆ๐‘–โˆˆ๐ผ๐‘‹๐‘– is

๐‘“๐‘–1โˆ’1(๐ต๐‘–1)โˆฉโ‹ฏโˆฉ๐‘“๐‘–๐‘›โˆ’1(๐ต๐‘–๐‘›)

It intersects the cross shape ๐ถ๐‘—1,โ€ฆ,๐‘—๐‘›

let the connected component decomposition ๐‘‹๐‘–=โˆ๐‘—โˆˆ๐ฝ(๐‘–)๐ด๐‘–,๐‘—(๐‘–)

All connected components of โˆ๐‘–โˆˆ๐ผ๐‘‹๐‘– are

โˆ๐‘–โˆˆ๐ผ๐ด๐‘–,๐‘—(๐‘–):๐‘—โˆˆโˆ๐‘–โˆˆ๐ผ๐ฝ(๐‘–)

Proof Using #link(<dependent-distributive>)[] โˆ๐‘–โˆˆ๐ผโจ†๐‘—โˆˆ๐ฝ๐ด๐‘–,๐‘—(๐‘–)=โจ†๐‘—โˆˆ๐ฝโˆ๐‘–โˆˆ๐ผ๐ด๐‘–,๐‘—(๐‘–) and the product being connected implies product connectedness, so โˆ๐‘–โˆˆ๐ผ๐ด๐‘–,๐‘—(๐‘–) is connected, thus it can no longer be decomposed

Define (how?) the topology or limit point of ๐‘“โˆˆ๐ถ(๐‘‹โ†’๐‘Œ) (should be something compact open topology?)

homotopy_(tag) homotopy or limit point homotopy := ๐ถ(๐‘‹โ†’๐‘Œ) is limit point connected

Example โ„๐‘›+1โˆ–0 is homotopic to ๐•Š๐‘›

homotopy-class_(tag) := the connected component of ๐ถ(๐‘‹โ†’๐‘Œ)

Since composition preserves continuity, composition induces an operation on ๐ถ(๐‘‹โ†’๐‘Œ). Prove whether it is well-defined. Sometimes it's invertible, making it a group operation