1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๆ—‹้‡ๅœบๆ‚้กน
  60. 54. ๅ‚่€ƒ
  61. English
  62. 55. notice
  63. 56. feature
  64. logic-topic
  65. 57. logic
  66. 58. set-theory
  67. 59. map
  68. 60. order
  69. 61. combinatorics
  70. calculus
  71. 62. real-numbers
  72. 63. limit-sequence
  73. 64. โ„^n
  74. 65. Euclidean-space
  75. 66. Minkowski-space
  76. 67. polynomial
  77. 68. analytic-Euclidean
  78. 69. analytic-Minkowski
  79. 70. analytic-struct-operation
  80. 71. ordinary-differential-equation
  81. 72. volume
  82. 73. integral
  83. 74. divergence
  84. 75. limit-net
  85. 76. compact
  86. 77. connected
  87. 78. topology-struct-operation
  88. 79. exponential
  89. 80. angle
  90. geometry
  91. 81. manifold
  92. 82. metric
  93. 83. metric-connection
  94. 84. geodesic-derivative
  95. 85. curvature-of-metric
  96. 86. Einstein-metric
  97. 87. constant-sectional-curvature
  98. 88. simple-symmetric-space
  99. 89. principal-bundle
  100. 90. group-action
  101. 91. stereographic-projection
  102. 92. Hopf-bundle
  103. field-theory
  104. 93. point-particle-non-relativity
  105. 94. point-particle-relativity
  106. 95. scalar-field
  107. 96. scalar-field-current
  108. 97. scalar-field-non-relativity
  109. 98. projective-lightcone
  110. 99. spacetime-momentum-spinor-representation
  111. 100. Lorentz-group
  112. 101. spinor-field
  113. 102. spinor-field-current
  114. 103. electromagnetic-field
  115. 104. Laplacian-of-tensor-field
  116. 105. Einstein-metric
  117. 106. interaction
  118. 107. harmonic-oscillator-quantization
  119. 108. spinor-field-misc
  120. 109. reference

note-math

[projective-cone] (Figure)

Can be equivalently understood as positive-cone & positive quotient

Since the metric is zero on the light cone, many analysis cannot be done. Also, the quotient of rays on the light cone corresponds to metric-cannot-distinguish-colinear-light-like

induce bijective of

Proof , induce bijective of set of 1d linear subspace

identity induce

[complex-struct-of-4d-projective-lightcone] Complex structure of 4d projective-lightcone (Figure)

  • Elliptic
  • Hyperbolic
    The hyperbolic case has two separate branches. There is a singularity region between the future light cone section and the past light cone section.
    Is there a analogue? But is a Euclidean manifold, which is not suitable for the signature of split complex numbers , and stereographic projective hyperbolic projection seems quite complicated
    Since the light cone can intercept , it is reasonable to lose the symmetry of corresponding to

Proof

Using to intercept the lightcone , we get

can be replaced with other non-zero real numbers, and the result is equivalent

Using to intercept the lightcone, we get space-like section . Divided into future and past two branches

's projection cannot be intercepted by

Stereographic projection transition-function is quadratic inversion

and its coordinate

coordinate 1 , coordinate map

coordinate 2 , coordinate map

transition-function , or , i.e. the multiplicative inverse of . is a complex manifold

vs stereographic projection transition-function

A more direct mapping between the coordinates of , cf. Hopf-bundle

[linear-fractional]

acts on , , use the multiplicative inverse of to restrict it to , in coordinate 1

in coordinate 2

has the same

needs to be handled separately, the composition of cannot be expressed as ordinary matrix multiplication

Scaling gives the same linear-fractional, so can quotient to or

Prop (ref-13, p.172โ€“174)

  • acts on in coordinate can be expressed as linear-fractional

  • [Lorentz-group-spinor-representation]

Proof

in , 3 rotation , 3 boost , where is rotation in direction, is boost in direction

[rotation-boost-spinor-representation]

3 rotation 3 boost acts on the intercepted by of the projective light cone, calculate its representation in (one of) the stereographic projection coordinates

  • rotation in
  • act on
  • act on , generator (with eigenvalue and eigenstate as base of )
  • boost in
  • act on
  • act on , generator

Because the direction was chosen to construct the stereographic projection, the cases in the directions will be more complicated (I have not done the calculation and verification below)

  • rotation in

    act on , generator

  • rotation in

    act on , generator

  • boost in

    act on , generator

  • boost in

    act on , generator

It can be prove that , It can be prove that

Comparing of and of , at least locally isomorphic

  • for

    where

  • have form where (ref-2, Vol.1, p.180)

  • from to . Solve it from the following to . Or use Polar decomposition to rotation boost + Euler angle

  • from to , where

Use spacetime-momentum-spinor-representation to directly calculate

use Euclidean type topology, because metric is inherited from space-like inherited from metric

is the conformal transformation group of , represented as linear-fractional in stereographic projection coordinates

To calculate the conformal transformation factor of the metric, use coordinate and 3 rotation, 3 boost โ€ฆ

[isotropy-on-projective-lightcone] Prop acts on projective-lightcone , isotropy is similar to

are surjective action, orbit number , so calculate isotropy only need to consider one point

Use the points , in coordinates , , corresponding to the point on the light cone projection

is isotropy ==>

So Isotropy

is similar to because

the group multiplication is

use the correspondence i.e. will give the usual semi-direct product , i.e.