1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

Non-relativistic spacetime โ„ร—โ„3

action-point-particle-non-relativity_(tag) Action of path ๐‘กโ‡๐‘ฅ(๐‘ก)

โˆซ๐‘‘๐‘ก(12๐‘š๐‘ฅฬ‡2โˆ’๐‘ˆ(๐‘ฅ))

let ๐‘‹(๐‘ก) be a time-varying vector field or time-varying ฮด diffeomorphism, or (1,๐‘‹(๐‘ก,๐‘ฅ1..3)) is a special type of vector field of non-relativistic spacetime โ„ร—โ„3

let ๐‘‹(๐‘ก) is zero at the boundary โ€” fix the endpoints of the path

let the differential of the action be zero

0=โˆ‚๐‘†โ‹…๐‘‹(๐‘ก)=โˆซ๐‘‘๐‘ก(โˆ‚โˆ‚๐‘ฅฬ‡(12๐‘š๐‘ฅฬ‡2)โ‹…๐‘‹ฬ‡โˆ’โˆ‚๐‘ˆโˆ‚๐‘ฅ(๐‘ฅ)โ‹…๐‘‹)

where โˆ‚โˆ‚๐‘ฅฬ‡(12๐‘š๐‘ฅฬ‡2)=๐‘š๐‘ฅฬ‡

use product rule

๐‘‘๐‘‘๐‘ก((๐‘š๐‘ฅฬ‡)โ‹…๐‘‹)=๐‘š๐‘ฅฬˆโ‹…๐‘‹+๐‘š๐‘ฅฬ‡โ‹…๐‘‹ฬ‡

and ๐‘‹(๐‘ก) is zero at the boundary, such that

โˆซ๐‘‘๐‘ก(๐‘‘๐‘‘๐‘ก(๐‘š๐‘ฅฬ‡)โ‹…๐‘‹)=0

So the differential of the action is

0=โˆ’โˆซ๐‘‘๐‘ก((๐‘š๐‘ฅฬˆ+๐‘‘๐‘ˆ๐‘‘๐‘ฅ)๐‘‹)

holds for all ฮด diffeomorphism ๐‘‹(๐‘ก), thus giving the Lagrange-equation (alias Eulerโ€“Lagrange-equation), for non-relativistic point particles, Newton-equation_(tag)

๐‘š๐‘ฅฬˆ+โˆ‚๐‘ˆโˆ‚๐‘ฅ=0

The momentum part of the action โˆซ๐‘‘๐‘ก(12๐‘š๐‘ฅฬ‡2) does not use the volume-form of โ„3, but instead uses the quadratic form |๐‘ฅฬ‡|2 of โ„3 and the volume-form #๐‘‘๐‘ก of time โ„

The Lagrangian can be written as a function ๐ฟ(๐‘ฅ,๐‘ฅฬ‡)=12๐‘š๐‘ฅฬ‡2โˆ’๐‘ˆ(๐‘ฅ) (a function on the tangent bundle)

point-particle-Lagrange-equation_(tag)

For a general ๐ฟ, repeat the above process. Action

โˆซ๐‘‘๐‘ก(๐ฟ(๐‘ฅ,๐‘ฅฬ‡))

Differential of the action

โˆซ๐‘‘๐‘ก(โˆ‚๐ฟโˆ‚๐‘ฅโ‹…๐‘‹+โˆ‚๐ฟโˆ‚๐‘ฅฬ‡โ‹…๐‘‹ฬ‡)

use

๐‘‘๐‘‘๐‘ก(โˆ‚๐ฟโˆ‚๐‘ฅฬ‡โ‹…๐‘‹)=(๐‘‘๐‘‘๐‘กโˆ‚๐ฟโˆ‚๐‘ฅฬ‡)โ‹…๐‘‹+โˆ‚๐ฟโˆ‚๐‘ฅฬ‡โ‹…๐‘‹ฬ‡

is zero at the boundary + integral is zero for all ฮด diffeomorphism ๐‘‹ ==> point-particle-Lagrange-equation_(tag)

โˆ‚๐ฟโˆ‚๐‘ฅโˆ’๐‘‘๐‘‘๐‘กโˆ‚๐ฟโˆ‚๐‘ฅฬ‡=0

Euclidean metric-manifold

Generalize to Euclidean metric-manifold

Needs #link(<metric-connection>)[]

Although the metric volume form is not used, due to the form of the kinetic energy part of the action, it is still related to the metric geodesic

Symmetry and conserved quantity

Handling the symmetry of non-relativistic spacetime โ„ร—โ„3 alias the Galileo group, generated from the translation of โ„ร—โ„3, rotation, non-relativistic boost

let ๐‘กโ‡๐‘ฅ(๐‘ก) be the solution to the action equation

Note that the variation of ๐‘ฅ(๐‘ก) along the symmetry may make it no longer a solution to the equation, i.e., the symmetric ฮด diffeomorphism may not be zero at the boundary, i.e., it will change the endpoints of the path, so the relevant derivative of the action at the solution ๐‘ฅ(๐‘ก) may not be zero

  • Time translation

In non-relativity, the mapping that preserves the measure and direction of time โ„ is the time translation ๐‘กโ‡๐‘ก+๐‘Ž

ฮด variation of the integral area calculation-1-action-point-particle-non-relativity_(tag)

๐‘‘๐‘‘๐‘ โˆซ๐‘ก0+๐‘ ๐‘Ž๐‘ก1+๐‘ ๐‘Ž๐‘‘๐‘ก(๐ฟ(๐‘ก))=(๐ฟ(๐‘ก1)โˆ’๐ฟ(๐‘ก0))โ‹…๐‘Ž=โˆซ๐‘ก0๐‘ก1๐‘‘๐‘ก(๐‘‘๐‘‘๐‘ก๐ฟ(๐‘ก)โ‹…๐‘Ž)

The first equation can come from the fundamental theorem of calculus + derivative of composite functions

In general, changing the region ๐ผ by exp(๐‘Ž(๐‘ก)) #link(<vector-field-as-ฮด-diffeomorphism>)[by ฮด diffeomorphism] ๐‘Ž(๐‘ก)

๐‘‘๐‘‘๐‘ โˆซexp(๐‘ ๐‘Ž(๐‘ก))๐ผ๐‘‘๐‘ก(๐‘“(๐‘ก))=โˆซ๐ผ๐‘‘๐‘ก(๐‘‘๐‘‘๐‘ก๐‘“(๐‘ก)โ‹…๐‘Ž(๐‘ก))

On the other side, use #link(<integral-change-of-variable-formula>)[change of variable formula]

โˆซ๐‘ก0+๐‘ ๐‘Ž๐‘ก1+๐‘ ๐‘Ž๐‘‘๐‘ก(๐ฟ(๐‘ก))=โˆซ๐‘ก0๐‘ก1๐‘‘๐‘ก(๐ฟ(๐‘ก+๐‘ ๐‘Ž))

Apply it to

๐ฟ(๐‘ก)=๐ฟ(๐‘ฅ(๐‘ก),๐‘ฅฬ‡(๐‘ก))

Then use the exchange of differential and integral

๐‘‘๐‘‘๐‘ โˆซ๐‘ก0๐‘ก1๐‘‘๐‘ก=โˆซ๐‘ก0๐‘ก1๐‘‘๐‘ก๐‘‘๐‘‘๐‘ 

Derivative of composite function ๐‘‘๐‘‘๐‘ ๐ฟ(๐‘ฅ(๐‘ก+๐‘ ๐‘Ž),๐‘ฅฬ‡(๐‘ก+๐‘ ๐‘Ž))=โˆ‚๐ฟโˆ‚๐‘ฅ๐‘ฅฬ‡๐‘Ž+๐‘‘๐ฟ๐‘‘๐‘ฅฬ‡๐‘ฅฬˆ๐‘Ž

is the variation of the action on the (changing endpoints) ฮด differentiation ๐‘‘๐‘‘๐‘ (0)๐‘ฅ(๐‘ก+๐‘ ๐‘Ž)=๐‘Ž๐‘ฅฬ‡(๐‘ก)=๐‘‹(๐‘ก) at the solution ๐‘ฅ(๐‘ก) calculation-2-action-point-particle-non-relativity_(tag)

๐‘‘๐‘‘๐‘ โˆซ๐‘ก0+๐‘ ๐‘Ž๐‘ก1+๐‘ ๐‘Ž๐‘‘๐‘ก(๐ฟ(๐‘ก))=โˆซ๐‘‘๐‘ก(โˆ‚๐ฟโˆ‚๐‘ฅโ‹…๐‘‹+โˆ‚๐ฟโˆ‚๐‘ฅฬ‡โ‹…๐‘‹ฬ‡)=โˆซ๐‘‘๐‘ก((โˆ‚๐ฟโˆ‚๐‘ฅโˆ’๐‘‘๐‘‘๐‘กโˆ‚๐ฟโˆ‚๐‘ฅฬ‡)โ‹…๐‘‹+๐‘‘๐‘‘๐‘ก(โˆ‚๐ฟโˆ‚๐‘ฅฬ‡โ‹…๐‘‹))ย byย product-ruleย ofย ๐‘‘๐‘‘๐‘ก(โˆ‚๐ฟโˆ‚๐‘ฅฬ‡โ‹…๐‘‹)=โˆซ๐‘‘๐‘ก(๐‘‘๐‘‘๐‘ก(โˆ‚๐ฟโˆ‚๐‘ฅฬ‡โ‹…๐‘‹))ย Lagrange-equationย โˆ‚๐ฟโˆ‚๐‘ฅโˆ’๐‘‘๐‘‘๐‘กโˆ‚๐ฟโˆ‚๐‘ฅฬ‡=0

recall

๐‘‘๐‘‘๐‘ โˆซ๐‘ก0+๐‘ ๐‘Ž๐‘ก1+๐‘ ๐‘Ž๐‘‘๐‘ก(๐ฟ(๐‘ก))=๐ฟ(๐‘ก)|๐‘ก0๐‘ก1โ‹…๐‘Ž=โˆซ๐‘ก0๐‘ก1๐‘‘๐‘ก(๐‘‘๐‘‘๐‘ก๐ฟ(๐‘ก)โ‹…๐‘Ž)

use ๐‘‹=๐‘Ž๐‘ฅฬ‡, merge the previous item with the next item

โˆซ๐‘ก0๐‘ก1๐‘‘๐‘ก๐‘‘๐‘‘๐‘ก(โˆ‚๐ฟโˆ‚๐‘ฅฬ‡โ‹…๐‘‹)=(โˆ‚๐ฟโˆ‚๐‘ฅฬ‡โ‹…๐‘ฅฬ‡โ‹…๐‘Ž)|๐‘ก0๐‘ก1

Get

(โˆ‚๐ฟโˆ‚๐‘ฅฬ‡โ‹…๐‘ฅฬ‡โˆ’๐ฟ)|๐‘ก0๐‘ก1โ‹…๐‘Ž=0

Quantity

๐ธ=โˆ‚๐ฟโˆ‚๐‘ฅฬ‡โ‹…๐‘ฅฬ‡โˆ’๐ฟ

Called the energy of the action ๐ฟ, is invariant along time ๐‘ก, forall ๐‘Žโˆˆโ„, i.e. conserved. This is true for ๐‘ก0<๐‘ก1 also imply ๐‘‘๐‘‘๐‘ก๐ธ=0

For ๐ฟ=12๐‘š๐‘ฅฬ‡(๐‘ก)2โˆ’๐‘ˆ(๐‘ฅ(๐‘ก)) the energy is energy-point-particle-non-relativity_(tag)

๐ธ=๐‘š๐‘ฅฬ‡2โˆ’(12๐‘š๐‘ฅฬ‡2โˆ’๐‘ˆ)=12๐‘š๐‘ฅฬ‡2+๐‘ˆ

Homogeneity of Time ==> Conservation of Energy

  • Spatial translation

Kinetic energy part of the action

โˆซ๐‘‘๐‘ก(12๐‘š๐‘ฅฬ‡2)

Although the spatial translation ฮด diffeomorphism is not zero at the boundary or changes the path endpoints, the time endpoints remain unchanged, and spatial translation does not change kinetic energy. with ๐‘ฅ+๐‘ ๐‘Ž, ๐‘‘๐‘‘๐‘ก(๐‘ฅ+๐‘ ๐‘Ž)=๐‘ฅฬ‡

๐‘‘๐‘‘๐‘ (๐‘ =0)โˆซ๐‘ก0๐‘ก1๐‘‘๐‘ก(12๐‘š(๐‘‘๐‘‘๐‘ก(๐‘ฅ+๐‘ ๐‘Ž))2)=๐‘‘๐‘‘๐‘ โˆซ๐‘ก0๐‘ก1๐‘‘๐‘ก(12๐‘š๐‘ฅฬ‡2)=0

So similar to #link(<calculation-2-action-point-particle-non-relativity>)[the case of energy], with ฮด diffeomorphism ๐‘‘๐‘‘๐‘ (๐‘ฅ+๐‘ ๐‘Ž)=๐‘Ž=๐‘‹(๐‘ก)

0=โˆซ๐‘ก0๐‘ก1๐‘‘๐‘ก(๐‘‘๐‘‘๐‘ก(โˆ‚๐ฟโˆ‚๐‘ฅฬ‡โ‹…๐‘‹))=โˆ‚๐ฟโˆ‚๐‘ฅฬ‡|๐‘ก0๐‘ก1โ‹…๐‘Ž

momentum-point-particle-non-relativity_(tag) The momentum of the action โˆซ๐‘‘๐‘ก(12๐‘š๐‘ฅฬ‡2)

๐‘š๐‘ฅฬ‡โ‹…๐‘Ž

is invariant along time ๐‘ก, forall ๐‘Žโˆˆโ„3, i.e. conserved

More generally, let the action โˆซ๐‘‘๐‘ก(๐ฟ(๐‘ฅ,๐‘ฅฬ‡)) with โˆ‚๐ฟโˆ‚๐‘Ž=0 such that the endpoints in this direction do not affect the action, then the momentum

โˆ‚๐ฟโˆ‚๐‘ฅฬ‡โ‹…๐‘Ž

is conserved

Homogeneity of Space ==> Translation Invariance of ๐ฟ ==> Conservation of Total Linear Momentum

Lagrangian

๐ฟ(๐‘ฅ,๐‘ฅฬ‡)=12โˆ‘๐‘š๐‘–๐‘ฅฬ‡๐‘–2โˆ’โˆ‘๐‘–<๐‘–โ€ฒ๐‘ˆ(|๐‘ฅ๐‘–โˆ’๐‘ฅ๐‘–โ€ฒ|)

โˆ‚๐ฟโˆ‚๐‘Ž=0 forall ๐‘Žโˆˆโ„3 (by (๐‘ฅ๐‘–+๐‘Ž)โˆ’(๐‘ฅ๐‘–โ€ฒ+๐‘Ž)=๐‘ฅ๐‘–โˆ’๐‘ฅ๐‘–โ€ฒ) so the momentum

โˆ‘๐‘š๐‘ฅฬ‡๐‘–โ‹…๐‘Ž

is conserved

  • Spatial rotation

Choose an origin. Lagrangian

๐ฟ(๐‘ฅ,๐‘ฅฬ‡)=12โˆ‘๐‘š๐‘ฅฬ‡2โˆ’๐‘ˆ(|๐‘ฅ|)

so(3) is represented as a rotation around axis ๐‘›, cross product ๐‘›ร—๐‘ฅ is ฮด rotation

Rotation around axis ==> (๐‘›ร—๐‘ฅ)โŸ‚๐‘›

in โ„‚, ๐‘’๐œƒย i๐‘ง=๐‘ง+๐œƒย iย ๐‘ง+๐‘œ(๐‘ง) with ๐œƒย iย โˆˆIm(โ„‚)=ย uย (1)=so(2), ๐‘งโŸ‚ย iย ๐‘ง and magnitude |๐œƒย i|=|๐‘›|

Length is invariant to direction โˆ‚|๐‘ฅ|โˆ‚๐‘ฅโ‹…(๐‘›ร—๐‘ฅ)=0

Similar to the case of momentum, if the Lagrangian is invariant to rotation, the ฮด diffeomorphism (tangent vector field) is ๐‘›ร—๐‘ฅ, thus

rotation-momentum-point-particle-non-relativity_(tag) Rotation momentum rotation-momentum alias angular momentum angular-momentum

๐‘š๐‘ฅฬ‡โ‹…(๐‘›ร—๐‘ฅ)=๐‘›โ‹…(๐‘ฅร—๐‘š๐‘ฅฬ‡)

is invariant along time ๐‘ก, forall ๐‘›โˆˆso(3)

quantity

๐‘ฅร—๐‘š๐‘ฅฬ‡

is also called rotation momentum

More generally, ๐ฟ(๐‘ฅ,๐‘ฅฬ‡) with ๐‘›โ‹…(๐‘ฅร—โˆ‚)๐‘“=0 such that the Lagrangian is invariant under rotation about ๐‘›, then the rotational momentum about ๐‘› is

๐‘ฅร—โˆ‚๐ฟโˆ‚๐‘ฅฬ‡

Isotropy of Space ==> Rotational Invariance of ๐ฟ ==> Conservation of Total Angular Momentum

๐‘Žโ‹…(๐‘ร—๐‘) = #link(<volume-of-parallelogram>)[parallelepiped directed volume] span by ๐‘Ž,๐‘,๐‘ in Euclidean โ„3

The rotational momentum ๐‘ฅร—๐‘š๐‘ฅฬ‡ is constant with respect to time, so span(๐‘ฅร—๐‘ฅฬ‡)โŸ‚ is a constant 2d plane. Since (๐‘ฅร—๐‘ฅฬ‡)โŸ‚๐‘ฅ,๐‘ฅฬ‡, span(๐‘ฅ,๐‘ฅฬ‡)โŠ‚span(๐‘ฅร—๐‘ฅฬ‡)โŸ‚, ๐‘ฅ(๐‘ก) is in the constant two-dimensional plane span(๐‘ฅร—๐‘ฅฬ‡)โŸ‚

For the Lagrangian of a system of point particles

๐ฟ(๐‘ฅ,๐‘ฅฬ‡)=12โˆ‘๐‘š๐‘–๐‘ฅฬ‡๐‘–2โˆ’โˆ‘๐‘–<๐‘–โ€ฒ๐‘ˆ(|๐‘ฅ๐‘–โˆ’๐‘ฅ๐‘–โ€ฒ|)

Total rotational momentum

๐‘›โ‹…โˆ‘(๐‘ฅ๐‘–ร—๐‘š๐‘ฅฬ‡๐‘–)

is invariant along time ๐‘ก

  • Non-relativistic boost

Non-relativistic boost ๐‘ฅโ‡๐‘ฅ+๐‘กโ‹…๐‘ฃ

The conserved quantity of the action โˆซ12๐‘š๐‘ฅฬ‡2๐‘‘๐‘ก is

๐‘š(๐‘กโ‹…๐‘ฅฬ‡โˆ’๐‘ฅ)โ‹…๐‘ฃ

forall ๐‘ฃโˆˆโ„3

  • The action 12๐‘š๐‘ฅฬ‡2 has all ฮด symmetries of non-relativistic spacetime โ„ร—โ„3, a 10 dimensional conserved quantity

  • The action 12๐‘š๐‘ฅฬ‡2โˆ’๐‘ˆ(๐‘ฅ) has conserved energy

  • The action โˆ‘12๐‘š๐‘–๐‘ฅฬ‡๐‘–2โˆ’โˆ‘๐‘–<๐‘–โ€ฒ๐‘ˆ(๐‘ฅ๐‘–โˆ’๐‘ฅ๐‘–โ€ฒ) has conserved energy and momentum

  • The action 12๐‘š๐‘ฅฬ‡2โˆ’๐‘ˆ(|๐‘ฅ|) has conserved energy and rotational momentum

  • The action โˆ‘12๐‘š๐‘–๐‘ฅฬ‡๐‘–2โˆ’โˆ‘๐‘–<๐‘–โ€ฒ๐‘ˆ(|๐‘ฅ๐‘–โˆ’๐‘ฅ๐‘–โ€ฒ|) has conserved energy, momentum, rotational momentum, 7 dimension

Non-relativistic potential (๐‘‰,๐ด)โˆˆโ„ร—โ„3

  • Rigid body

Parameterized by SO(3) (or SO(2)), so it can be regarded as a non-relativistic particle on the Euclidean manifold SO(3). But the use of metric or the use of kinetic energy is not the #link(<Killing-form>)[] of so(3), because for objects that are not uniformly mass-distributed spheres, rotations in different directions have different inertias. Moment of inertia i.e. metric ๐‘” may need to be calculated additionally

The moment of inertia can also be used as a symmetric operator under the Killing-form, with the characteristic basis being the principal axes of inertia and the eigenvalues being the moments of inertia.