1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

real-exponential_(tag)

If the exponent is a natural number, then ๐‘Ž๐‘›+๐‘š=๐‘Ž๐‘›๐‘Ž๐‘š. It can be simply generalized to rational numbers

For the exponent being a real number, define the exponential function ๐‘ฅโ‡๐‘Ž๐‘ฅ as satisfying ๐‘Ž๐‘ฅ+๐‘ฆ=๐‘Ž๐‘ฅ๐‘Ž๐‘ฆ and ๐‘Ž1=๐‘Ž

Assume ๐‘“(๐‘ฅ)=๐‘Ž๐‘ฅ is analytic. Power series expansion of ๐‘“(๐‘ฅ+๐‘ฆ)=๐‘“(๐‘ฅ)๐‘“(๐‘ฆ) (requires commutativity of โ„,โ„‚,โ„‚split?)

Expand both sides

โˆ‘๐‘“(๐‘›)(0)๐‘›!(๐‘ฅ+๐‘ฆ)๐‘›=โˆ‘๐‘“(๐‘›)(0)๐‘›!๐‘ฅ๐‘›โˆ‘๐‘“(๐‘›)(0)๐‘›!๐‘ฆ๐‘›โˆ‘๐‘›โˆ‘๐‘–+๐‘—=๐‘›๐‘“(๐‘›)(0)๐‘›!๐‘›!๐‘–!๐‘—!๐‘ฅ๐‘–๐‘ฆ๐‘—=โˆ‘๐‘›โˆ‘๐‘–+๐‘—=๐‘›๐‘“(๐‘–)(0)๐‘–!๐‘“(๐‘—)(0)๐‘—!๐‘ฅ๐‘–๐‘ฆ๐‘—

Let the coefficients be the same โˆ€๐‘›,โˆ€๐‘–+๐‘—=๐‘›,๐‘“(๐‘›)(0)=๐‘“(๐‘–)(0)๐‘“(๐‘—)(0)
==>

  • โˆ€๐‘›,๐‘“(๐‘›)(0)=๐‘“(๐‘›)(0)๐‘“(0)(0)โŸน๐‘“(0)(0)=1
  • โˆ€๐‘›,๐‘“(๐‘›)(0)=(๐‘“(1)(0))๐‘›

==>

๐‘“(๐‘ฅ)=โˆ‘(๐‘“(1)(0)๐‘›!๐‘ฅ)๐‘›

natural-exponential_(tag) def ๐‘’๐‘ฅ=ย expย ๐‘ฅ=โˆ‘1๐‘›!๐‘ฅ๐‘›:โ„โ†’(0,โˆž) with ๐‘’1=exp(1)=โˆ‘1๐‘›!=๐‘’ #link(<natural-constant>)[]

from the series, we can see that, differential ๐‘‘๐‘‘๐‘ฅ(๐‘’๐‘ฅ)=๐‘’๐‘ฅ>0 ==> ๐‘’๐‘ฅ exists #link(<inverse-analytic>)[]

natural-logarithm_(tag) def logย =ย expย โˆ’1:(0,โˆž)โ†’โ„. ๐‘‘๐‘‘๐‘ฅย logย ๐‘ฅ=1๐‘ฅ

for ๐‘Ž>0, def ๐‘“1(0)โ‰”ย logย ๐‘Žโˆˆโ„

for ๐‘Ž, def ๐‘“1(0)โ‰”ย logย ๐‘Žโˆˆ๐•‚

๐‘Ž1=๐‘“(1)=โˆ‘1๐‘›!(logย ๐‘Ž)๐‘›=ย expย ย logย ๐‘Ž=๐‘Ž๐‘Ž๐‘ฅ=๐‘“(๐‘ฅ)=โˆ‘1๐‘›!(logย ๐‘Žโ‹…๐‘ฅ)๐‘›=expย (๐‘ฅย logย ๐‘Ž)

power-function_(tag) Defining the exponential function means that for each ๐‘Žโˆˆโ„, each real exponent ๐‘ฅ is defined, and thus the power function ๐‘Žโ‡๐‘Ž๐‘ฅ is also defined, or rewritten as ๐‘ฅโ‡๐‘ฅ๐‘Ž

It can also be expressed as ๐‘ฅ๐‘Ž=exp(๐‘Žย logย ๐‘ฅ)

Euler-formula_(tag)

  • โ„‚
expย ๐‘ง=cosย ๐‘ง+ย iย ย sinย ๐‘งย iย โ‰ƒ(โˆ’11)โˆผso(2)
  • โ„‚split
exphย ๐‘ง=coshย ๐‘ง+ย iย ย splitย ย sinhย ๐‘งย iย ย splitย โ‰ƒ(11)โˆผso(1,1)