1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

Example Euclidean analysis of manifolds, various coordinates of the sphere ๐•Š๐‘›

  • Function graph coordinates, function equations |๐‘ฅ|2=1 and implicit function theorem. e.g. ๐‘ฆ=1โˆ’๐‘ฅ2 for ๐•Š1โŠ‚โ„2
  • #link(<stereographic-projection>)[stereographic projection]
  • Polar coordinates. Starting from trigonometric functions of ๐•Š1, construct new latitudes inductively
  • Geodesic coordinates

Example Parametric curves and surfaces of โ„3. analytic function ๐‘“:โ„2โ†’โ„3, ๐‘‘๐‘“โ‰ 0 ==> for local parameter, it's local analytic isomorphism

manifold_(tag) minimal structure to define manifold, family of coordinate cards covering ๐‘€ with the same dimension, transition functions using Euclidean or Minkowski or quadratic analysis

orientable_(tag) Orientable := can analytically define #link(<orientation>)[] in the tangent bundle

Equivalent to decomposition of Diff to the detโˆ’1(โ„<0)โŠ”ย detโˆ’1(โ„>0)

Equivalent to the existence of a coordinate cover, each transition function differentiation ๐‘‘๐‘“โˆˆย SO

Example #link(<Mobius-strip>)[] Non-orientable

If the interior of a manifold with boundary is orientable, then the boundary is also orientable. Intuitively, the local of boundary has the same interior + the interior is orientable ==> local of boundary has the same orientation ==> the boundary orientation is determined

manifold-with-boundary_(tag) Manifold with boundaries. The coordinates can be the region enclosed by the ๐‘›โˆ’1-dimensional hyperplane, and the transformation function need to be able to derives the transformation function in the ๐‘›โˆ’1-dimensional subspace. Usually use almost everywhere analysis to deal with some singularities

metric-manifold_(tag) metric on manifold (Abbreviation metric) is to define metric in each tangent space, which is equivalent to choosing an orthonormal frame bundle on the manifold tangent bundle. For SO(๐‘,๐‘ž) oritentable, we can choose SO(๐‘,๐‘ž) orientable frame bundle

metric can be inherited from submanifold or quotient manifold of โ„๐‘,๐‘ž

Example โ€ฆ

Although the manifold is defined using quadratic topology and differentials, there are still many different metrics. A well-behaved metric is #link(<Einstein-metric.typ>)[]

isometry_(tag) := diffeomorphism preserving metric ๐‘”. It is usually also assumed to preserve the orientation of the orientable manifold

Diffeomorphism acts on metric space, isometry is the #link(<isotropy>)[] of this group action

Metrics with different curvatures cannot be in the same orbit. In particular, zero-curvature and non-zero-curvature metrics cannot be in the same oribt

ฮด-isometry_(tag) alias Killing-field_(tag)

will be used for the momentum conservation flow on the manifold

Question dimension of ฮด-isometry and isometry group โ‰คย dimย (โ„๐‘,๐‘žโ‹Šย SO(๐‘,๐‘ž))

Example some explicit construction of manifold

Quadratic manifold โ„š๐‘,๐‘ž(ยฑ๐‘Ÿ2)

cf. ref-10 ref-11

group SO(๐‘,๐‘ž),U,SU,Sp,SL,๐บ2. exp coordinate

Grassmannian-manifold_(tag) SO(๐‘›) act on ๐‘˜ subspace SO(๐‘›)SO(๐‘˜)ร—SO(๐‘›โˆ’๐‘˜) (orientable)

Stiefel-manifold_(tag) tautological frame bundle SO(๐‘›)SO(๐‘›โˆ’๐‘˜)

tautological bundle

Generalized to the ๐‘,๐‘ž quadratic case

lens space

Continuous homeomorphism but not diffeomorphism. Example Various modifications of the quaternion โ„ version of #link(<Hopf-bundle>)[] give an example called exotic 7-shpere