1. notice
  2. English
  3. 1. feature
  4. logic-topic
  5. 2. logic
  6. 3. set-theory
  7. 4. map
  8. 5. order
  9. 6. combinatorics
  10. calculus
  11. 7. real-numbers
  12. 8. limit-sequence
  13. 9. โ„^n
  14. 10. Euclidean-space
  15. 11. Minkowski-space
  16. 12. polynomial
  17. 13. analytic-Euclidean
  18. 14. analytic-Minkowski
  19. 15. analytic-struct-operation
  20. 16. ordinary-differential-equation
  21. 17. volume
  22. 18. integral
  23. 19. divergence
  24. 20. limit-net
  25. 21. compact
  26. 22. connected
  27. 23. topology-struct-operation
  28. 24. exponential
  29. 25. angle
  30. geometry
  31. 26. manifold
  32. 27. metric
  33. 28. metric-connection
  34. 29. geodesic-derivative
  35. 30. curvature-of-metric
  36. 31. Einstein-metric
  37. 32. constant-sectional-curvature
  38. 33. simple-symmetric-space
  39. 34. principal-bundle
  40. 35. group-action
  41. 36. stereographic-projection
  42. 37. Hopf-bundle
  43. field-theory
  44. 38. point-particle-non-relativity
  45. 39. point-particle-relativity
  46. 40. scalar-field
  47. 41. scalar-field-current
  48. 42. scalar-field-non-relativity
  49. 43. projective-lightcone
  50. 44. spacetime-momentum-spinor-representation
  51. 45. Lorentz-group
  52. 46. spinor-field
  53. 47. spinor-field-current
  54. 48. electromagnetic-field
  55. 49. Laplacian-of-tensor-field
  56. 50. Einstein-metric
  57. 51. interaction
  58. 52. harmonic-oscillator-quantization
  59. 53. spinor-field-misc
  60. 54. reference
  61. ไธญๆ–‡
  62. 55. notice
  63. 56. feature
  64. ้€ป่พ‘
  65. 57. ้€ป่พ‘
  66. 58. ้›†ๅˆ่ฎบ
  67. 59. ๆ˜ ๅฐ„
  68. 60. ๅบ
  69. 61. ็ป„ๅˆ
  70. ๅพฎ็งฏๅˆ†
  71. 62. ๅฎžๆ•ฐ
  72. 63. ๆ•ฐๅˆ—ๆž้™
  73. 64. โ„^n
  74. 65. Euclidean ็ฉบ้—ด
  75. 66. Minkowski ็ฉบ้—ด
  76. 67. ๅคš้กนๅผ
  77. 68. ่งฃๆž (Euclidean)
  78. 69. ่งฃๆž (Minkowski)
  79. 70. ่งฃๆž struct ็š„ๆ“ไฝœ
  80. 71. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  81. 72. ไฝ“็งฏ
  82. 73. ็งฏๅˆ†
  83. 74. ๆ•ฃๅบฆ
  84. 75. ็ฝ‘ๆž้™
  85. 76. ็ดง่‡ด
  86. 77. ่ฟž้€š
  87. 78. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  88. 79. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  89. 80. ่ง’ๅบฆ
  90. ๅ‡ ไฝ•
  91. 81. ๆตๅฝข
  92. 82. ๅบฆ่ง„
  93. 83. ๅบฆ่ง„็š„่”็ปœ
  94. 84. Levi-Civita ๅฏผๆ•ฐ
  95. 85. ๅบฆ่ง„็š„ๆ›ฒ็އ
  96. 86. Einstein ๅบฆ่ง„
  97. 87. ๅธธๆˆช้ขๆ›ฒ็އ
  98. 88. simple-symmetric-space
  99. 89. ไธปไธ›
  100. 90. ็พคไฝœ็”จ
  101. 91. ็ƒๆžๆŠ•ๅฝฑ
  102. 92. Hopf ไธ›
  103. ๅœบ่ฎบ
  104. 93. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  105. 94. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  106. 95. ็บฏ้‡ๅœบ
  107. 96. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  108. 97. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  109. 98. ๅ…‰้”ฅๅฐ„ๅฝฑ
  110. 99. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  111. 100. Lorentz ็พค
  112. 101. ๆ—‹้‡ๅœบ
  113. 102. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  114. 103. ็”ต็ฃๅœบ
  115. 104. ๅผ ้‡ๅœบ็š„ Laplacian
  116. 105. Einstein ๅบฆ่ง„
  117. 106. ็›ธไบ’ไฝœ็”จ
  118. 107. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  119. 108. ๆ—‹้‡ๅœบๆ‚้กน
  120. 109. ๅ‚่€ƒ

note-math

Example Euclidean analysis of manifolds, various coordinates of the sphere

  • Function graph coordinates, function equations and implicit function theorem. e.g. for
  • stereographic projection
  • Polar coordinates. Starting from trigonometric functions of , construct new latitudes inductively
  • Geodesic coordinates

Example Parametric curves and surfaces of . analytic function , ==> for local parameter, it's local analytic isomorphism

[manifold] minimal structure to define manifold, family of coordinate cards covering with the same dimension, transition functions using Euclidean or Minkowski or quadratic analysis

[orientable] Orientable := can analytically define orientation in the tangent bundle

Equivalent to decomposition of to the

Equivalent to the existence of a coordinate cover, each transition function differentiation

Example Mobius-strip Non-orientable

If the interior of a manifold with boundary is orientable, then the boundary is also orientable. Intuitively, the local of boundary has the same interior + the interior is orientable ==> local of boundary has the same orientation ==> the boundary orientation is determined

[manifold-with-boundary] Manifold with boundaries. The coordinates can be the region enclosed by the -dimensional hyperplane, and the transformation function need to be able to derives the transformation function in the -dimensional subspace. Usually use almost everywhere analysis to deal with some singularities

[metric-manifold] metric on manifold (Abbreviation metric) is to define metric in each tangent space, which is equivalent to choosing an orthonormal frame bundle on the manifold tangent bundle. For oritentable, we can choose orientable frame bundle

metric can be inherited from submanifold or quotient manifold of

Example โ€ฆ

Although the manifold is defined using quadratic topology and differentials, there are still many different metrics. A well-behaved metric is Einstein-metric.typ

[isometry] := diffeomorphism preserving metric . It is usually also assumed to preserve the orientation of the orientable manifold

Diffeomorphism acts on metric space, isometry is the isotropy of this group action

Metrics with different curvatures cannot be in the same orbit. In particular, zero-curvature and non-zero-curvature metrics cannot be in the same oribt

[ฮด-isometry] alias [Killing-field]

will be used for the momentum conservation flow on the manifold

Question dimension of ฮด-isometry and isometry group

Example some explicit construction of manifold

Quadratic manifold

cf. ref-10 ref-11

group . exp coordinate

[Grassmannian-manifold] act on subspace (orientable)

[Stiefel-manifold] tautological frame bundle

tautological bundle

Generalized to the quadratic case

lens space

Continuous homeomorphism but not diffeomorphism. Example Various modifications of the quaternion version of Hopf-bundle give an example called exotic 7-shpere