1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

symmetric-space-locally_(tag) := โˆ‡๐‘…=0

Example quadratic manifold, simple-Lie-group and related symmetric-space

constant-sectional-curvature ==> symmetric-space

simple-Lie-group := Lie-algebra & Lie-bracket cannot decompose

Killing form := ๐‘”(๐‘‹,๐‘Œ)โ‰”ยฑย trย [๐‘‹,[๐‘Œ,]]=ยฑtr(adย ๐‘‹ย adย ๐‘Œ) for ๐‘‹,๐‘Œ in the tangent space at ๐Ÿ™

Then define the metric at ๐Ÿ™ to be the metric at other places generated by the action, and it is bi-invariant i.e. both forms of group action give the same metric

Such a definition makes the group action an isometry of the Killing-form

Killing-form can also be defined for non-simple-Lie-groups

Question Motivation for the definition of Killing-form?

simple-Lie-group <==> Killing-form is non-degenerate

The Killing-form of simple-Lie-group and its symmetric-space is Einstein-metric

Proof for the case of simple-Lie-group

  • ๐‘”([๐‘‹,๐‘‹โ€ฒ],๐‘‹โ€ณ)+๐‘”(๐‘‹โ€ฒ,[๐‘‹,๐‘‹โ€ณ])=0 for Lie algebra ๐‘‹,๐‘‹โ€ฒ,๐‘‹โ€ณ

Proof

Lie-algebra ==> ฮด-isometry ==> for ฮด-group-action ๐‘‹, โˆ‚๐‘‹๐‘”=0

Because the Killing-form is the metric generated by the group action, the Lie-derivative is zero ๐ฟ๐‘‹๐‘”=0

For fields generated by ๐‘‹,๐‘‹โ€ฒ,๐‘‹โ€ณ

0=๐ฟ๐‘‹(๐‘”(๐‘‹โ€ฒ,๐‘‹โ€ณ))=(โˆ‚๐‘‹๐‘”)(๐‘‹โ€ฒ,๐‘‹โ€ณ)โˆ’(๐‘”(๐ฟ๐‘‹๐‘‹โ€ฒ,๐‘‹โ€ณ)+๐‘”(๐‘‹โ€ฒ,๐ฟ๐‘‹๐‘‹โ€ณ))=๐‘”([๐‘‹,๐‘‹โ€ฒ],๐‘‹โ€ณ)+๐‘”(๐‘‹โ€ฒ,[๐‘‹,๐‘‹โ€ณ])
  • geodesic-derivative โˆ‡=12[,]. Proof see below

  • curvature [โˆ‡๐‘–,โˆ‡๐‘–โ€ฒ]๐‘—=โˆ’14[[๐‘–,๐‘–โ€ฒ],๐‘—]

  • โˆ‡๐‘…=0. hence symmetric-space-locally

  • curvature ๐‘”([โˆ‡๐‘–,โˆ‡๐‘–โ€ฒ]๐‘—,๐‘—โ€ฒ)=โˆ’14๐‘”([๐‘–,๐‘–โ€ฒ],[๐‘—,๐‘—โ€ฒ])

  • sectional-curvature for orthonormal โˆ’14|[๐‘‹,๐‘Œ]|2

  • Ricci-curvature Ric(๐‘‹,๐‘Œ)=14ย trย [๐‘‹,[๐‘Œ,]]=ยฑ14๐‘”. hence Einstein-metric

  • scalar-curvature scalย =ยฑ14ย dim

Prop โˆ‡๐‘‹๐‘Œ=12[๐‘‹,๐‘Œ] at ๐Ÿ™, similarly for fields generated by ๐‘‹,๐‘Œ (bi-invariant)

Proof

Prop โˆ‡๐‘‹๐‘‹=0

This gives โˆ‡๐‘‹๐‘Œ+โˆ‡๐‘Œ๐‘‹=0

with โˆ‡๐‘‹๐‘Œโˆ’โˆ‡๐‘Œ๐‘‹=[๐‘‹,๐‘Œ], this gives โˆ‡=12[,]

Proof of โˆ‡๐‘‹๐‘‹=0

need ๐‘”(๐‘Œ,โˆ‡๐‘‹๐‘‹)=0

Since group action generates ๐‘”,๐‘‹โ€ฒ,๐‘‹โ€ณ, ๐‘”(๐‘‹โ€ฒ,๐‘‹โ€ณ)(atย ๐‘)โ‰ก๐‘”(๐‘‹โ€ฒ,๐‘‹โ€ณ)(atย ๐Ÿ™) constant value ==> โˆ‚๐‘”(๐‘‹โ€ฒ,๐‘‹โ€ณ)=0

0=โˆ‚๐‘‹(๐‘”(๐‘‹โ€ฒ,๐‘‹โ€ณ))=๐‘”(โˆ‡๐‘‹๐‘‹โ€ฒ,๐‘‹โ€ณ)+๐‘”(๐‘‹โ€ฒ,โˆ‡๐‘‹๐‘‹โ€ณ)

need ๐‘”(โˆ‡๐‘‹๐‘Œ,๐‘‹)=0

โˆ‡๐‘‹๐‘Œโˆ’โˆ‡๐‘Œ๐‘‹=[๐‘‹,๐‘Œ]

๐‘”([๐‘‹,๐‘Œ],๐‘‹)=โˆ’๐‘”(๐‘Œ,[๐‘‹,๐‘‹])=0

need ๐‘”(โˆ‡๐‘Œ๐‘‹,๐‘‹)=0

by 0=โˆ‚๐‘Œ(๐‘”(๐‘‹,๐‘‹))

Question any more intuitive proof?

Prop for simple-Lie-group

Integral curves of bi-invariant vector fields generated by Lie algebra are Killing-form geodesics, because

  • Geodesics can be written as โˆ‡๐‘ฅฬ‡๐‘ฅฬ‡=0
  • Assume ๐‘ฅฬ‡ is an integral curve of ๐‘‹, ๐‘ฅฬ‡(๐‘ก)=๐‘‹(๐‘ฅ(๐‘ก))
  • โˆ‡๐‘‹๐‘‹=0

Quadratic form manifold. Symmetric group of โ„๐‘,๐‘ž is SO(๐‘,๐‘ž)

  • orbit type |๐‘ฅ|2=1 or โ„š๐‘,๐‘ž(1)

    • induced metric signature (๐‘โˆ’1,๐‘ž) (normal vector |๐‘ฅ|2=1>0)
    • isotropy-group SO(๐‘โˆ’1,๐‘ž)
    • quotient SO(๐‘,๐‘ž)SO(๐‘โˆ’1,๐‘ž)=โ„š๐‘,๐‘ž(1)
    • isometry of โ„š๐‘,๐‘ž(1) is SO(๐‘,๐‘ž) (isometry assumed to preserve direction)
  • orbit type |๐‘ฅ|2=โˆ’1 or โ„š๐‘,๐‘ž(โˆ’1)

    • induced metric signature (๐‘,๐‘žโˆ’1) (normal vector |๐‘ฅ|2=โˆ’1<0)
    • isotropy-group SO(๐‘,๐‘žโˆ’1)
    • quotient SO(๐‘,๐‘ž)SO(๐‘,๐‘žโˆ’1)=โ„š๐‘,๐‘ž(โˆ’1)
    • isometry of โ„š๐‘,๐‘ž(โˆ’1) is SO(๐‘,๐‘ž)

โ„š๐‘,๐‘ž(ยฑ1)=โ„š๐‘ž,๐‘(โˆ“1)

Example

  • (0,๐‘›) spatial manifold has โ„š1,๐‘›(1)=โ„๐•ช๐‘›=SO(1,๐‘›)SO(๐‘›),โ„š0,๐‘›+1(โˆ’1)=๐•Š๐‘›=SO(๐‘›+1)SO(๐‘›)

  • (1,๐‘›โˆ’1) spacetime quadratic manifold has โ„š2,๐‘›โˆ’1(1)=SO(2,๐‘›โˆ’1)SO(1,๐‘›โˆ’1) and hyperboloid of one sheet โ„š1,๐‘›(โˆ’1)=SO(1,๐‘›)SO(1,๐‘›โˆ’1)

Examples of quadratic manifolds with this property

simple-Lie-group ๐บ, simple-Lie-group isotropy ๐ป, orbit ๐บ๐ป

Lie-algebra has orthogonal decomposition gย =ย hย โŠ•ย gย h, not Lie bracket decomposition

h is the Lie-algebra of ๐ป, gย hย =ย hโŸ‚ is the orthogonal complement

exp gives the coordinates of ๐บ,๐ป,๐บ๐ป

The Killing-form of g derives the Killing-form of h and the Einstein metric of gh

  • [h,h]โŠ‚ย h

  • [h,gh]โŠ‚ย gย h

  • [gh,gh]โŠ‚ย h