1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

Natural number โ„• addition

๐‘Ž is counting ๐‘Ž times 1, ๐‘Ž+๐‘ is counting ๐‘Ž times first, then counting ๐‘ times

  • Associative law: (๐‘Ž+๐‘)+๐‘=๐‘Ž+(๐‘+๐‘)
  • Commutative law: ๐‘Ž+๐‘=๐‘+๐‘Ž

Proof The intuition in the real world is that for counting +1, no matter how the counting task is manually divided into several subtasks, the result will not be affected, and the total decomposition methods are limited. The associative and commutative laws of addition are just special cases. Just as we recognize natural numbers by counting, we can always recognize the commutative and associative laws by counting. Everything reduces to the case of complete additive decomposition, with only the commutative and associative laws of a large number of 1s.

It seems difficult for computers to express this intuition, but it seems that all finite results must be correct. Similar to what is done in #link(<natural-number>)[], in order for computers to express this property, which holds for all natural numbers, using finite characters, memory, and finite time (and potentially infinite time), it needs to be defined as a true proposition.

The usual "proof" is to use the smallest assumption, the associative law of 1, (๐‘Ž+๐‘)+1=๐‘Ž+(๐‘+1) or the definition of addition (๐‘Ž+1)+๐‘=(๐‘Ž+๐‘)+1, and then deduce other

Natural number โ„• multiplication

๐‘Žโ‹…๐‘ is counting ๐‘Ž times of counting ๐‘ times

It also satisfies the commutative and associative laws. The intuition in the real world is "two-dimensional and three-dimensional rectangles". For counting +1, no matter how it is decomposed into subtasks of product decomposition, it will not affect the result. Therefore, the commutative and associative laws of multiplication are just special cases of complete multiplication decomposition i.e. prime factorization, and the total number of decompositions is limited

Distributive law of natural number operations

(๐‘Ž+๐‘)โ‹…๐‘=๐‘Žโ‹…๐‘+๐‘โ‹…๐‘

The intuition is to decompose the side length of a two-dimensional rectangle into sum

Integer โ„ค

The number axis has two directions

Rational number โ„š

๐‘› equal division operation, the inverse of multiplication 1๐‘›

Do not confuse it with the division and remainder of โ„•,โ„ค, which is a successive subtraction of a number ๐‘Ž by another number ๐‘, rather than equal division

Real number โ„

One intuition of real numbers is length

Given the intuitiveness of real numbers, we can assume that it exists and use many axioms to define real numbers i.e. assume a true proposition. But you can also "recover" real numbers from rational numbers

Examples of irrational numbers

Algebraic integer algebraic-integerย โ‰”{๐‘ฅโˆˆโ„:(๐‘ฅ๐‘›+๐‘Ž๐‘›โˆ’1๐‘ฅ๐‘›โˆ’1+โ‹ฏ+๐‘Ž0=0)โˆง(๐‘Ž0,๐‘Ž1,โ€ฆ,๐‘Ž๐‘›โˆ’1โˆˆโ„ค)}

The "integer" in algebraic integer is because algebraic-integerย โˆฉโ„š=โ„ค

Proof (p.43 of ref-8)

Take ๐‘,๐‘žโˆˆโ„ค and make them relatively prime. Substitute ๐‘ฅ=๐‘๐‘ž into the equation, multiply by ๐‘ž๐‘›

๐‘๐‘›+๐‘Ž๐‘›โˆ’1๐‘ž๐‘๐‘›โˆ’1+โ‹ฏ+๐‘Ž0๐‘ž๐‘›=0๐‘๐‘›=โˆ’๐‘ž(๐‘Ž๐‘›โˆ’1๐‘๐‘›โˆ’1+โ‹ฏ+๐‘Ž0๐‘ž๐‘›โˆ’1)

The right side is divisible by ๐‘ž. But ๐‘,๐‘ž are relatively prime, so ๐‘ž=ยฑ1 or ๐‘=ยฑ1.

๐‘โ‰ ยฑ1โŸน๐‘ž=ยฑ1

๐‘=ยฑ1โŸนยฑ1=๐‘๐‘›=๐‘žโ‹…ย some-integerย โŸน๐‘ž=ยฑ1

So ๐‘ž=ยฑ1. Thus ๐‘ฅ=ยฑ๐‘โˆˆโ„ค

Special case {๐‘ฅโˆˆโ„š:๐‘ฅ2โˆ’2=0}. But (ยฑ1)2=1 and |๐‘ฅ|โ‰ฅ2โŸน|๐‘ฅ|2โ‰ฅ4

So {๐‘ฅโˆˆโ„š:๐‘ฅ2โˆ’2=0}=โˆ… that is 2 is not a rational number

Algebraic number algebraic-numberย โ‰”{๐‘ฅโˆˆโ„:(๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ž๐‘›โˆ’1๐‘ฅ๐‘›โˆ’1+โ‹ฏ+๐‘Ž0=0)โˆง(๐‘Ž0,๐‘Ž1,โ€ฆ,๐‘Ž๐‘›โˆˆโ„ค)}

Note that ๐‘Ž๐‘›=1 is not required, ๐‘ฅโˆˆโ„š is not restricted, including all rational numbers ๐‘๐‘ž, some irrational numbers e.g. 2

Algebraic number algebraic-number is a countable set, real number โ„ is an uncountable set

Transcendental number transcendental-numberย โ‰”โ„โˆ–ย algebraic-numberย โ‰ โˆ…. ๐‘’,๐œ‹ are transcendental numbers

Decimal, binary vs nested interval vs segmentation

Decimal (nested interval) seems very intuitive

However, decimal cannot natively handle ๐‘’=โˆ‘๐‘›=0โˆž1๐‘›!

Many different โ„• nested intervals have the same limit, e.g. [0,1๐‘›] vs [โˆ’1๐‘›,0], need limit-distance-vanish system quotient. let distanceย (๐ด)=sup๐‘ฅ,๐‘ฅโ€ฒโˆˆ๐ด|๐‘ฅโˆ’๐‘ฅโ€ฒ|

let ๐ด0โŠƒ๐ด1โ‹ฏ,๐ต0โŠƒ๐ต1โ‹ฏ and limย ๐‘›โ†’โˆždistance(๐ด๐‘›),distance(๐ต๐‘›)=0, limit-distance-vanish relation (alias Cauchy convergence)

โˆ€(๐œ€โˆˆโ„š)โˆง(๐œ€>0),โˆƒ๐‘โˆˆโ„•,โˆ€๐‘›,๐‘š>๐‘,distance(๐ด๐‘›โˆช๐ต๐‘š)<๐œ€

You can change the โ„• rational number interval nesting to a general rational number interval whose length #link(<hom-limit>)[limit] tends to zero โŠ‚ #link(<maximal-linear-order>)[linearly ordered chain] or a more general rational number interval whose length tends to zero (maximal) #link(<net>)[net]

A rational number interval is a subset ๐ดโŠ‚โ„š with property order uninterrupted

โ‹€๐‘Ž,๐‘โˆˆ๐ด๐‘Ž<๐‘โ‹€๐‘โˆˆโ„š๐‘Ž<๐‘<๐‘๐‘โˆˆ๐ด

From an operational simplicity perspective, Dedekind-cut should be used. "Operational simplicity" means

  • let ๐‘ฅโˆˆโ„, {๐‘ฅ}โ†”โ„โˆ–{๐‘ฅ} one-to-one correspondence
  • (โ„โˆ–{๐‘ฅ})โˆฉโ„š=โ„šโˆ–{๐‘ฅ}=โ„š<๐‘ฅโŠ”โ„š>๐‘ฅ
  • So ๐‘ฅโˆˆโ„ and โ„š<๐‘ฅโŠ”โ„š>๐‘ฅ one-to-one correspondence

Dedekind-cut_(tag) irrational number โ„โˆ–โ„š

๐‘ฅโˆˆโ„โˆ–โ„š one-to-one corresponds to {(๐ด,๐ต)โˆˆSubset(โ„š)2:(โ„š=๐ดโŠ”๐ต)โˆง(โˆ€(๐‘Ž,๐‘)โˆˆ(๐ด,๐ต),๐‘Ž<๐‘)}

๐‘ฅโ‰”(๐ด,๐ต). Record (๐ด,๐ต) as (โ„š<๐‘ฅ,โ„š>๐‘ฅ) again

Real number โ„โ‰”โ„šโŠ”(โ„โˆ–โ„š)

  • order-real_(tag) โ„ order ๐‘ฅ<๐‘ฆโŸบ(โ„š<๐‘ฅโŠŠโ„š<๐‘ฆ)

let

๐ด+๐ดโ€ฒโ‰”{๐‘Ž+๐‘Žโ€ฒ:(๐‘Ž,๐‘Žโ€ฒ)โˆˆ(๐ด,๐ดโ€ฒ)}๐ดโ‹…๐ดโ€ฒโ‰”{๐‘Žโ‹…๐‘Žโ€ฒ:(๐‘Ž,๐‘Žโ€ฒ)โˆˆ(๐ด,๐ดโ€ฒ)}
  • add-real_(tag) โ„ addition. let ๐‘ฅ,๐‘ฆโˆˆโ„
๐‘ฅ+๐‘ฆโ‰”(โ„š<๐‘ฅ+โ„š<๐‘ฆ,โ„š>๐‘ฅ+โ„š>๐‘ฆ)expectย (โ„š<๐‘ฅ+๐‘ฆ,โ„š>๐‘ฅ+๐‘ฆ)โˆ’๐‘ฅโ‰”(โˆ’โ„š>๐‘ฅ,โˆ’โ„š<๐‘ฅ)expectย (โ„š<โˆ’๐‘ฅ,โ„š>โˆ’๐‘ฅ)

Because of the existence of <0, multiplication does not preserve order. But the multiplication of โ„š>0,โ„>0 preserves order. First deal with the case of >0, and then use reflection โˆ’๐‘ฅ to get the case of <0

  • multiply-real_(tag) โ„ multiplication. let ๐‘ฅ,๐‘ฆ>0
๐‘ฅโ‹…๐‘ฆโ‰”(โ„š(0,๐‘ฅ)โ‹…โ„š(0,๐‘ฆ),โ„š(๐‘ฅ,โˆž)โ‹…โ„š(๐‘ฆ,โˆž))ย expectย (โ„š(0,๐‘ฅ๐‘ฆ),โ„š(๐‘ฅ๐‘ฆ,โˆž))1๐‘ฅโ‰”(1โ„š(๐‘ฅ,โˆž),1โ„š(0,๐‘ฅ))ย expectย (โ„š(0,1๐‘ฅ),โ„š(1๐‘ฅ,โˆž))

โ„ค,โ„š,โ„'s +,โ‹… all have associativity, commutativity, and distributivity

โ„ completeness completeness-real_(tag)

exact-bound_(tag) Least-upper-bound property

let ๐ดโŠ‚โ„ have an upper bound

โˆƒ๐‘ฅโˆˆโ„,โ‹ƒ๐‘Žโˆˆ๐ดโ„š<๐‘Ž=โ„š<๐‘ฅ

Supremum sup๐ดโ‰”๐‘ฅ

  • โˆ€๐‘Žโˆˆ๐ด,๐‘Žโ‰คsup๐ด
  • โˆ€๐œ€>0,โˆƒ๐‘Žโˆˆ๐ด,sup๐ดโˆ’๐œ€<๐‘Žโ‰คsup๐ด

monotone-convergence_(tag) monotone bound #link(<limit-sequence-real>)[convergence] Proof use exact-bound

nested-closed-interval-theorem_(tag) Nested interval theorem

Whether it is โ„• nested intervals or โŠ‚ linearly ordered chain nested intervals, linear order means the monotonicity of interval endpoints, use supremum ๐‘Ž1 and infimum ๐‘Ž0 for the endpoints with ๐‘Ž0โ‰ค๐‘Ž1 to get the intersection of nested closed intervals is a closed interval [๐‘Ž0,๐‘Ž1]โ‰ โˆ…. [๐‘Ž0,๐‘Ž1] can be understood as the minimal element of โŠ‚ linear order chain nested closed sets

closed-interval-net-theorem_(tag) Closed interval #link(<net>)[net] B intersection is non-empty โ‹‚ย Bย โ‰ โˆ…

Proof

Supplement the net B with all finite intersections

Take a #link(<maximal-linear-order>)[maximal linearly ordered chain] C. By the nested interval theorem, its intersection is a non-empty closed interval โ‹‚ย Cย โ‰ โˆ…

By the linear order maximality of C, intuitively, the closed interval โ‹‚ย C will be smaller than all closed intervals of B, so โ‹‚ย Cย โŠ‚โ‹‚ย B

โˆ€๐ตโˆˆย B, we prove โ‹‚ย Cย โŠ‚๐ต

Define the closed interval linear ordered chain Cย ๐ต={๐ตโˆฉ๐ถโˆˆย Bย :๐ถโˆˆย C}. ๐ตโˆฉ๐ถโŠ‚๐ต. We prove โ‹‚ย Cย ๐ต=โ‹‚ย C

Proof by contradiction. Assume โ‹‚ย Cย ๐ตโŠŠโ‹‚ย C. Then the small/large endpoint of โ‹‚ย C๐ต is larger/smaller than the small/large endpoint of โ‹‚ย C

The โŠ‚ linear ordered chain satisfies โ‹‚๐ดโŠƒ๐ด0๐ด=๐ด0

  • If the closed interval โ‹‚ย Cย ๐ตโˆ‰ย B, then use the โ„ exact bound principle for the endpoints
โˆƒ๐ตโˆฉ๐ถ0โˆˆย Cย ๐ต๐ตโˆฉ๐ถ0โˆˆย Bย ๐ตโˆฉ๐ถ0=โ‹‚๐ตโˆฉ๐ถโŠƒ๐ตโˆฉ๐ถ0๐ตโˆฉ๐ถโŠŠโ‹‚ย C

There exists ๐ตโˆฉ๐ถ0โˆˆย B that belongs to โ‹‚ย C, which contradicts that โ‹‚ย C is a โŠ‚ maximal linear ordered chain

  • If the closed interval โ‹‚ย Cย ๐ตโˆˆย B, the same contradiction applies

let ๐‘Ž๐‘›:โ„•โ†’โ„

def โ„•โ†’โ„ sequence ๐‘˜โ‡sup๐‘˜โ‰ฅ๐‘›{๐‘Ž๐‘˜} monotone decreasing, ๐‘˜โ‡inf๐‘˜โ‰ฅ๐‘›{๐‘Ž๐‘˜} monotone increasing

limsup_(tag) Upper limit

limโ€‰sup๐‘›โ†’โˆž{๐‘Ž๐‘›}โ‰”ย limย ๐‘›โ†’โˆžsup๐‘˜โ‰ฅ๐‘›{๐‘Ž๐‘˜}=inf๐‘›โˆˆโ„•sup๐‘˜โ‰ฅ๐‘›{๐‘Ž๐‘˜}

liminf_(tag) Lower limit

limโ€‰inf๐‘›โ†’โˆž{๐‘Ž๐‘›}โ‰”ย limย ๐‘›โ†’โˆžinf๐‘›โ‰ฅ๐‘˜{๐‘Ž๐‘˜}=sup๐‘›โˆˆโ„•inf๐‘›โ‰ฅ๐‘˜{๐‘Ž๐‘˜}

Example

  • ๐‘Ž๐‘˜=1+1๐‘˜

    sup๐‘›โˆˆโ„•{๐‘Ž๐‘›}=2sup๐‘›โ‰ฅ๐‘˜{๐‘Ž๐‘˜}=1+1๐‘˜ย limย ๐‘›โ†’โˆžsup๐‘›โ‰ฅ๐‘˜{๐‘Ž๐‘˜}=1
  • ๐‘Ž๐‘˜=1+(โˆ’1)๐‘˜

    limโ€‰sup๐‘›โ†’โˆž{๐‘Ž๐‘›}=2

For the โ„• sequence, define distance{๐‘Ž๐‘›,๐‘Ž๐‘›+1,โ€ฆ}โ‰”sup๐‘š,๐‘šโ€ฒโ‰ฅ๐‘›|๐‘Ž๐‘šโˆ’๐‘Ž๐‘šโ€ฒ|

For a general net, define distance(๐ต)=sup๐‘Ž,๐‘Žโ€ฒโˆˆ๐ต|๐‘Žโˆ’๐‘Žโ€ฒ|

limit-distance-vanish-sequence_(tag) := limย ๐‘›โ†’โˆž|{๐‘Ž๐‘›,๐‘Ž๐‘›+1,โ€ฆ}|=0 i.e. tail distance vanish

limit-distance-vanish-net_(tag) := โˆ€๐œ€>0,โˆƒ๐ตโˆˆย B,distance(๐ต)<๐œ€

Cauchy-completeness-real_(tag) limit-distance-vanish sequence or net converges

Proof

Unbounded ==> โˆ€๐œ€>0,โˆ€๐‘โˆˆโ„•,โˆƒ๐‘›>๐‘,|{๐‘Ž๐‘›,๐‘Ž๐‘›+1,โ€ฆ}|โ‰ฅ๐œ€

==> The limit-distance-vanish sequence is bounded

==> The monotonically increasing or decreasing bounded sequences ๐‘›โ‡inf๐‘šโ‰ฅ๐‘›{๐‘Ž๐‘š},sup๐‘šโ‰ฅ๐‘›{๐‘Ž๐‘š} have limits limโ€‰inf๐‘›โ†’โˆž{๐‘Ž๐‘›}โ‰คlimโ€‰sup๐‘›โ†’โˆž{๐‘Ž๐‘›}

limit-distance-vanish property ==> limโ€‰inf๐‘›โ†’โˆž{๐‘Ž๐‘›}=limโ€‰sup๐‘›โ†’โˆž{๐‘Ž๐‘›}=๐‘Ž

Thus ๐‘Ž๐‘› converges to ๐‘Ž

For nets, by the closed interval net theorem, let ๐‘Žโˆˆโ‹‚๐ตโˆˆย B๐ตโ‰ โˆ…. Using limit-distance-vanish-net, we obtain that the net converges limย ๐ตโˆˆย Bsup๐‘Ž๐ตโˆˆ๐ต|๐‘Ž๐ตโˆ’๐‘Ž|=0

Conversely, a convergent sequence is limit-distance-vanish. by the triangle inequality |๐‘Ž๐‘šโˆ’๐‘Ž๐‘šโ€ฒ|โ‰ค|๐‘Ž๐‘šโˆ’๐‘Ž|+|๐‘Ž๐‘šโ€ฒโˆ’๐‘Ž|

Sequence โ„•โ†’โ„ or net B converges to ๐‘Ž <==> limit-distance-vanish

uncountable-real_(tag) The real number is uncountable |โ„•|<|โ„|

It has been proved that |โ„•|<|Subset(โ„•)|. cf. #link(<cardinal-increase>)[]

recall {0,1}โ„•โ‰ƒ(โ„•โ†’ย bool)โ‰ƒSubset(โ„•)

|Subset(โ„)|=|โ„•โ†’โ„•|=|โ„|

Proof

According to the nested interval theorem, the binary decimal point representation of real numbers: ๐‘Ž0.๐‘Ž1๐‘Ž2โ€ฆ The ๐‘›-th digit takes 0โ‡0โ‹…12๐‘› or 1โ‡1โ‹…12๐‘›

==> {0,1}โ„•โ‰ƒ[0,1]. Where, quotient the possible two equivalent choices in binary

[0,1]โ‰ƒ(โˆ’1,1) by linear map or affine map

(โˆ’1,1)โ‰ƒโ„ by ๐‘ฅโ‡๐‘ฅ1โˆ’๐‘ฅ2

(โ„•โ†’โ„•)โ‰ƒ(0,1]

Proof

(๐‘›1,๐‘›2,โ€ฆ)โ‡12๐‘›1+12๐‘›1+๐‘›2+โ‹ฏ

It represents in binary, the first position where 1 appears is ๐‘›1, the second position is ๐‘›2 โ€ฆ

Compare {0,1}โ„•, 12๐‘š1+12๐‘š2+โ‹ฏ vs 12๐‘›1+12๐‘›1+๐‘›2+โ‹ฏ

๐‘š1=๐‘›1๐‘š2=๐‘›1+๐‘›2โ‹ฏ

Distance ๐‘›๐‘–+1=๐‘š๐‘–+1โˆ’๐‘š๐‘–