1. notice
  2. 中文
  3. 1. feature
  4. 逻辑
  5. 2. 逻辑
  6. 3. 集合论
  7. 4. 映射
  8. 5. 序
  9. 6. 组合
  10. 微积分
  11. 7. 实数
  12. 8. 数列极限
  13. 9. ℝ^n
  14. 10. Euclidean 空间
  15. 11. Minkowski 空间
  16. 12. 多项式
  17. 13. 解析 (Euclidean)
  18. 14. 解析 (Minkowski)
  19. 15. 解析 struct 的操作
  20. 16. 常微分方程
  21. 17. 体积
  22. 18. 积分
  23. 19. 散度
  24. 20. 网极限
  25. 21. 紧致
  26. 22. 连通
  27. 23. 拓扑 struct 的操作
  28. 24. 指数函数
  29. 25. 角度
  30. 几何
  31. 26. 流形
  32. 27. 度规
  33. 28. 度规的联络
  34. 29. Levi-Civita 导数
  35. 30. 度规的曲率
  36. 31. Einstein 度规
  37. 32. 常截面曲率
  38. 33. simple-symmetric-space
  39. 34. 主丛
  40. 35. 群作用
  41. 36. 球极投影
  42. 37. Hopf 丛
  43. 场论
  44. 38. 非相对论点粒子
  45. 39. 相对论点粒子
  46. 40. 纯量场
  47. 41. 纯量场的守恒流
  48. 42. 非相对论纯量场
  49. 43. 光锥射影
  50. 44. 时空动量的自旋表示
  51. 45. Lorentz 群
  52. 46. 旋量场
  53. 47. 旋量场的守恒流
  54. 48. 电磁场
  55. 49. 张量场的 Laplacian
  56. 50. Einstein 度规
  57. 51. 相互作用
  58. 52. 谐振子量子化
  59. 53. 参考
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. ℝ^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

Quantization of Schrodinger eq harmonic oscillator (ℝ)

Commutation relation of raising and lowering operators a (± i)=12(x ±1i 𝑚𝜔 p) and energy operator

[H,a (i )]=−ℏ𝜔 a ( i )[H,a (− i)]=ℏ𝜔 a (−i)

let a = a (i). a †= a (−i)

let raising and lowering operators simplify to a (± i)= x ±1 i  p

Eigenfunctions of the energy operator

Starting from the ground state a 𝜓=0⟹𝜓=𝜓0=exp(−12𝑦2)

Obtain the eigenfunctions of the next energy level through the raising operator a†

𝜓𝑛= a †𝑛𝜓=(−1)𝑛𝑒12𝑦2𝑑𝑛𝑑𝑦𝑛𝑒−12𝑦2𝜓=𝐻𝑛(𝑦)exp(−12𝑦2)

where

𝐻𝑛(𝑦)=(−1)𝑛𝑒𝑦2𝑑𝑛𝑑𝑦𝑛𝑒−𝑦2

is the Hermite polynomial

Eigenfunction normalization

(12𝑛𝑛!(𝑚𝜔ℏ𝜋)12)12𝑒−12𝑚𝜔ℏ𝑞2𝐻𝑛((𝑚𝜔ℏ𝜋𝑞)12)

Harmonic oscillator path integral quantization

If the solution of the harmonic oscillator 𝑎(i )𝑒−i 𝜔𝑡+𝑎(−i)𝑒i 𝜔𝑡 uses fixed starting positions 𝑥0,𝑥1, then

𝑎(i )=𝑥1𝑒𝜔𝑡0 i−𝑥0𝑒𝜔𝑡1 i𝑒𝜔(𝑡1−𝑡0)(− i)−𝑒𝜔(𝑡1−𝑡0) i

where 𝑒𝜔(𝑡1−𝑡0) i−𝑒𝜔(𝑡1−𝑡0)(− i)=2 i  sin 𝜔(𝑡1−𝑡0)

action (𝑧=Re(𝑧)+ i Im(𝑧))

𝑆cl (𝑡0,𝑡1,𝑥0,𝑥1)=∫𝑡0𝑡1𝑑𝑡 12𝑚𝜔2⋅4 Re ⟨𝑎(− i)𝑒𝜔𝑡 i,𝑎( i )𝑒𝜔𝑡(− i)⟩=12𝑚𝜔2⋅4⋅1𝜔(Im ⟨𝑎(− i)𝑒𝜔𝑡 i,𝑎( i )𝑒𝜔𝑡(− i)⟩)|𝑡0𝑡1=12𝑚𝜔⋅(|𝑥1|2+|𝑥0|2) cos 𝜔(𝑡−𝑡0)−2 Re ⟨𝑥1,𝑥0⟩sin 𝜔(𝑡−𝑡0)

where 2 cos 𝜔(𝑡−𝑡0)=𝑒𝜔(𝑡1−𝑡0) i+𝑒𝜔(𝑡1−𝑡0)(− i)

For time only depending on the difference 𝑡1−𝑡0

path-integral-quantization_(tag)

Propagator 𝐾 represents constructing a unitary using the path integral Lagrangian. For the harmonic oscillator, use the Fourier transform method. cf. wiki:Path_integral_formulation

let 𝑇=𝑡1−𝑡0

For endpoints fixed but offset from the classical path, perform Fourier expansion 𝑥−𝑥 cl =∑𝑛=1∞𝑏𝑛sin(𝑛𝜋𝑡𝑇), action 𝑆(𝑏1,…,𝑏𝑛,…)=𝑆 cl +∑12|𝑏𝑛|2𝑚2𝑇(𝑛2𝜋2𝑇2−𝜔2)

𝐾(𝑇,𝑥0,𝑥)= lim 𝑛→∞( unitary-factor)(𝑛)⋅∫ℝ𝑛𝑑𝑏𝑛⋯𝑑𝑏1 𝑒i ℏ𝑆(𝑏1,…,𝑏𝑛)=(𝑚𝜔2𝜋ℏ i 𝑇)12𝑒i ℏ𝑆 cl∏𝑛=1∞𝑛𝜋212∫ℝ𝑑𝑏𝑛exp(i 2ℏ|𝑏𝑛|2𝑚2𝑇(𝑛2𝜋2𝑇2−𝜔2))=(𝑚𝜔2𝜋ℏ i  sin 𝜔𝑇)12exp(i 𝑚𝜔2ℏ⋅(|𝑥1|2+|𝑥0|2) cos 𝜔𝑇−2 Re ⟨𝑥1,𝑥0⟩sin 𝜔𝑇)

Used Gauss integral + infinite product ∏𝑛=1∞(1−𝑥2𝑛2)=sin 𝜋𝑥𝜋𝑥

eigen-decomposition_(tag)

Characteristic equation given by 𝑒−𝐸ℎ𝑡 i𝜓(𝑥)

H 𝜓=𝐸𝜓

Decomposition of H,𝑒− i 1ℏ H 𝑡,𝐾(𝑡0,𝑡,𝑥0,𝑞) given by characteristic orthonormal basis |𝑛⟩

H =∑𝑛𝐸𝑛|𝑛⟩⟨𝑛|𝑒− i 1ℏ H 𝑡=∑𝑛𝑒− i 1ℏ𝐸𝑛𝑡|𝑛⟩⟨𝑛|𝐾=∑𝑛𝑒− i 1ℏ𝐸𝑛𝑡⟨𝑥|𝑛⟩⟨𝑛|𝑥0⟩

𝐾=(𝑚𝜔𝜋ℏ)12𝑒− i 12𝜔𝑇𝑅(𝑒− i 𝜔𝑇) then let 𝑅 perform Taylor expansion, where 𝑒− i 12𝜔𝑇𝑒− i 𝑛𝜔𝑇=𝑒− i (12+𝑛)𝜔𝑇 corresponds to energy level 𝐸𝑛=(12+𝑛)ℏ𝜔

If you are interested Question Quantization of ℂ harmonic oscillator and spin harmonic oscillator