1. notice
  2. 中文
  3. 1. feature
  4. 逻辑
  5. 2. 逻辑
  6. 3. 集合论
  7. 4. 映射
  8. 5. 序
  9. 6. 组合
  10. 微积分
  11. 7. 实数
  12. 8. 数列极限
  13. 9. ℝ^n
  14. 10. Euclidean 空间
  15. 11. Minkowski 空间
  16. 12. 多项式
  17. 13. 解析 (Euclidean)
  18. 14. 解析 (Minkowski)
  19. 15. 解析 struct 的操作
  20. 16. 常微分方程
  21. 17. 体积
  22. 18. 积分
  23. 19. 散度
  24. 20. 网极限
  25. 21. 紧致
  26. 22. 连通
  27. 23. 拓扑 struct 的操作
  28. 24. 指数函数
  29. 25. 角度
  30. 几何
  31. 26. 流形
  32. 27. 度规
  33. 28. 度规的联络
  34. 29. Levi-Civita 导数
  35. 30. 度规的曲率
  36. 31. Einstein 度规
  37. 32. 常截面曲率
  38. 33. simple-symmetric-space
  39. 34. 主丛
  40. 35. 群作用
  41. 36. 球极投影
  42. 37. Hopf 丛
  43. 场论
  44. 38. 非相对论点粒子
  45. 39. 相对论点粒子
  46. 40. 纯量场
  47. 41. 纯量场的守恒流
  48. 42. 非相对论纯量场
  49. 43. 光锥射影
  50. 44. 时空动量的自旋表示
  51. 45. Lorentz 群
  52. 46. 旋量场
  53. 47. 旋量场的守恒流
  54. 48. 电磁场
  55. 49. 张量场的 Laplacian
  56. 50. Einstein 度规
  57. 51. 相互作用
  58. 52. 谐振子量子化
  59. 53. 参考
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. ℝ^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

co-vector-of-Hermitian-tensor_(tag)

ϕ induces the co-vector of #link(<Hermitian-tensor>)[]

⨀∗2ℂ2⟶ℝ𝑝spin⟿ϕ†𝑝 spin ϕ

Since 𝑝spin ∈⨀∗2ℂ2 is a Hermitian matrix, then (ϕ†𝑝 spin ϕ)†=ϕ†𝑝 spin ϕ, so ϕ†𝑝 spin ϕ∈ℝ

Because 𝑝spin is Hermitian or self-adjoint with respect to the inner product of ℂ2, 𝑝spin can be considered to act symmetrically on the two slots ϕ†(𝑝spin ϕ)=(ϕ†(𝑝spin ϕ))†=(𝑝spin ϕ)†ϕ

The base of the vector space 𝜎0,𝜎1,𝜎2,𝜎3∈ℝ1,3 gives the coefficients of the co-vector ϕ†𝜎𝜇ϕ∈ℝ

The action of (12,0) on the co-vector ϕ is

(𝐴ϕ)†𝑝 spin (𝐴ϕ)=ϕ†(𝐴†𝑝 spin 𝐴)ϕ=ϕ†(𝑓(𝐴†)𝑝 spin)ϕ by  #link(<property-of-parity>)[] =ϕ†(𝑓(𝐴)⊺𝑝 spin)ϕ

It also corresponds to the transformation of the dual base, i.e., the base of the co-vector space (ℝ1,3)⊺, which is 𝑓(𝐴)⊺

#link(<parity>)[] dual and (0,12) induced action

𝑝spin ⇝ϕ†𝑝 spin ◊ϕ⇝(𝐴†ϕ)†𝑝 spin ◊(𝐴†ϕ)=ϕ†(𝐴𝑝 spin ◊𝐴†)ϕ=ϕ†(𝐴†−1𝑝 spin 𝐴−1)◊ϕ by  #link(<property-of-parity>)[] =ϕ†(𝑓(𝐴†−1)𝑝 spin)◊ϕ=ϕ†𝑓(𝐴)⊺−1ϕ

Similarly, co-vectors can also be defined for anti-Hermitian tensors

⋀∗2ℂ2⟶Im(ℂ)𝑃⟿ϕ†𝑃ϕ

For complex conjugate two-tensors

⨂∗2ℂ2⟶ℂ𝑃⟿ϕ†𝑃ϕ

spinor-field-motivation_(tag)

  • formally corresponds momentum 𝑝 to gradient momentum i ⋅(∂0,−∂1,−∂2,−∂3)= i ⋅(∂0,∂1,∂2,∂3)◊, and 𝑝spin to #link(<spacetime-momentum-spinor-representation>)[]

    i ⋅(∂0+(−∂1)−(∂2+∂3) i−(∂2−∂3) i∂0−(−∂1))= i ⋅(∂0+∂1∂2+∂3 i∂2−∂3 i∂0−∂1)◊= i 𝜎𝜇∂𝜇◊= i 𝜎𝜇◊∂𝜇≕ i ∂ spin◊
  • formally used for co-vector generated by ϕ to obtain ℂ field

    ϕ† i ∂ spin ◊ϕ
  • action + product rule + divergence + zero boundary + integral quadratic form ==> self-adjoint operator i ∂ spin◊

    ⟨ϕ, i ∂ spin ◊𝜓⟩𝐿2=⟨i ∂ spin ◊ϕ,𝜓⟩𝐿2

massless-spinor-Lagrangian_(tag) alias Weyl-Lagrangian_(tag)

ϕ† i ∂ spin ◊ϕ

or ϕ†(𝜎◊⋅ i ∂)ϕ or ϕ†(𝜎𝜇◊ i ∂𝜇)ϕ

where 𝐿2 is integrated using ℝ1,3 + quadratic form of ℂ2 as ϕ†𝜓

The only one that works is Re ϕ†(𝜎𝜇◊ i ∂𝜇)ϕ=− i  Im ϕ†(𝜎𝜇◊ i ∂𝜇), because Im ϕ†(𝜎𝜇◊ i ∂𝜇)ϕ= i  Re ϕ†(𝜎𝜇◊∂𝜇)ϕ= i ∂𝜇(ϕ†𝜎𝜇◊ϕ)= i div(ϕ†𝜎ϕ) is a divergence quantity, using Stokes' theorem + zero boundary

variation gives linear part ∫2 Re (Δϕ)† i ∂ spin ◊ϕ

massless-spinor-equation_(tag) , alias Weyl-equation_(tag)

∂spin ◊ϕ=0

or (𝜎⋅∂◊)ϕ=0 or (𝜎𝜇∂𝜇◊)ϕ=0

Similar to ℂ2≃ℝ2 via 𝑥±𝑦 i, varying with respect to ℂ-valued ϕ is equivalent to varying with respect to ℝ-valued ϕ,ϕ†

∂spin ϕ◊=(𝜎⋅∂◊)ϕ=(𝜎𝜇∂𝜇◊)ϕ can be interpreted as the gradient momentum of the field (after metric-dual) i ⋅(∂0,−∂1,−∂2,−∂3)ϕ∈ℝ1,3⊗ℂ2, compounded to, the multiplication of momentum and spinor (𝑝spin ⊗ϕ⇝𝑝 spin ϕ)∈ℝ1,3⊗ℂ2→ℂ2

Weyl-parity_(tag)

parity dual action uses (0,12) spinor

ϕ† i ∂ spin ϕ

parity dual eq

∂spin ϕ=0

or (𝜎⋅∂)ϕ=0 or (𝜎𝜇∂𝜇)ϕ=0

Weyl-eq-plane-wave_(tag)

Plane wave solution Φ𝑒− i 𝑝𝑥 with 𝑝2=𝑚2 and 𝑝spin Φ=0

A linear equation with det 𝑝 spin =𝑝2=0 indicates non-zero solutions. The solution space is one-dimensional, and the solution can be written as Φ=𝑝 spin ◊𝜉 with dim(im(𝑝spin ◊))=1

massive-spinor-Lagrangian_(tag) action for mass-coupled spinors, alias Dirac-Lagrangian_(tag)

couple Weyl spinors and their parity (12,0),(0,12) to (12,0)⊕(0,12)

(𝐴(𝐴†)−1)(ϕ𝜓)=(𝐴ϕ(𝐴†)−1𝜓)

𝑝spin ∈⨀∗2ℂ2, 𝑝spin ⇝(𝑝 spin◊𝑝 spin)

(ϕ𝜓)†((i ∂ spin◊i ∂ spin)−𝑚(𝟙𝟙))(ϕ𝜓)

invariant non couple term (ϕ𝜓)†(i ∂ spin◊i∂spin)(ϕ𝜓)= i ϕ†∂ spin ◊ϕ+ i 𝜓†∂ spin 𝜓

non-couple term variation with respect to ϕ gives ∫2 Re (Δϕ)† i ∂ spin ◊ϕ

invariant couple term −(ϕ𝜓)†𝑚(𝟙𝟙)(ϕ𝜓)=−𝑚(ϕ†𝜓+𝜓†ϕ)=−2 Re 𝑚ϕ†𝜓

couple term variation with respect to ϕ gives ∫2 Re (Δϕ)†(−𝑚𝜓)

  • overall variation with respect to ϕ gives i ∂ spin ◊ϕ−𝑚𝜓=0
  • overall variation with respect to 𝜓 gives i ∂ spin 𝜓−𝑚ϕ=0
  • when 𝑚=0, decouples into two parity-dual massless-spinors

These two PDEs imply

∂spin ∂ spin ◊ϕ+𝑚2ϕ=0∂ spin ◊∂ spin 𝜓+𝑚2𝜓=0

and ∆=∂ spin ∂ spin ◊=∂ spin ◊∂ spin as "square root of ∆" square-root-of-spacetime-Laplacian_(tag)

Overall (∆+𝑚2)(ϕ𝜓)=0, square root of KG. If a field satisfy Dirac eq, then itt satisfy KG eq

All partial derivatives of the action 𝑆 is zero ∂𝑆∂ϕ=∂𝑆∂𝜓=0, giving massive-spinor-equation_(tag) , alias Dirac-equation_(tag)

((i ∂ spin◊i ∂ spin)−𝑚(𝟙𝟙))(ϕ𝜓)=0

Similar to ℂ2≃ℝ2 via 𝑥±𝑦 i, variation with respect to ℂ2 valued ϕ,𝜓 is equivalent to variation with respect to ℝ2 valued (ϕ𝜓),(ϕ𝜓)†

If the couple term −𝑚(𝟙𝟙),𝑚∈ℝ is replaced by −(𝑛𝟙𝑚𝟙),𝑚,𝑛∈ℂ, the action is still invariant. However, the eq can no longer be decomposed into that simpler form

Question For any 𝐴∈SL(2,ℂ), the invariant matrix (𝐴(𝐴†)−1)†(𝑀1𝑀2𝑀3𝑀4)(𝐴(𝐴†)−1)=(𝐴†𝑀1𝐴𝐴†𝑀2(𝐴†)−1𝐴−1𝑀3𝐴𝐴−1𝑀4(𝐴†)−1)=(𝑀1𝑀2𝑀3𝑀4) is probably only (𝑛𝟙𝑚𝟙),𝑚,𝑛∈ℂ

Dirac-eq-plane-wave_(tag) Plane wave solution (ΦΨ)𝑒− i 𝑝𝑥 with 𝑝2=𝑚2 and ((𝑝spin 𝑝spin ◊)−𝑚(𝟙𝟙))(ΦΨ)=0

The latter is a linear equation, so the solution is not difficult. The solution space is two-dimensional, and the solution can be written as (ΦΨ)=(𝑝spin ◊12𝜉𝑝spin 12𝜉),𝜉∈ℂ2

squrae-root-of-spacetime-momentum-spinor-representation_(tag)

Although it might be possible to use the eigenvalues of the Hermite matrix 𝑝spin (𝑝0±(𝑝02−𝑚2)12), we will calculate it directly here. let 𝑝spin =𝑞 spin2 or

(𝑝0+𝑝1𝑝2+ i 𝑝3𝑝2− i 𝑝3𝑝0−𝑝1)=((𝑞0+𝑞1)2+𝑞22+𝑞322𝑞0(𝑞2+ i 𝑞3)2𝑞0(𝑞2− i 𝑞3)(𝑞0−𝑞1)2+𝑞22+𝑞32)

==>

𝑝0=𝑞02+𝑞12+𝑞22+𝑞32𝑝1=2𝑞0𝑞1𝑝2+ i 𝑝3=2𝑞0(𝑞2+ i 𝑞3)

==> Use 𝑝12+𝑝22+𝑝32=𝑝02−𝑚2

𝑝0=𝑞02+14𝑞02(𝑝02−𝑚2)

==> Quadratic equation for 𝑞02: (𝑞02)2−𝑝0(𝑞02)+14(𝑝02−𝑚2), solution

𝑞02=12(𝑝0±𝑚)

==>

𝑞0=(12(𝑝0±𝑚))12=𝑝0+𝑚(2(𝑝0±𝑚))12𝑖=1,2,3⇒𝑞𝑖=𝑝𝑖(2(𝑝0±𝑚))12

or

𝑝spin 12=𝑝spin ±𝑚𝟙(2(𝑝0±𝑚))12 and  𝑝 spin ◊12=𝑝spin ◊±𝑚𝟙(2(𝑝0±𝑚))12

Still Hermite. Calculation yields

𝑝spin 12𝑝 spin ◊12=𝑚=𝑝 spin ◊12𝑝 spin12

Example

𝑝=(𝑝0,𝑝1,0,0),𝑝0>0 then 𝑝spin 12=((𝑝0+𝑝1)12(𝑝0−𝑝1)12),𝑝 spin ◊12=((𝑝0−𝑝1)12(𝑝0+𝑝1)12)

If 𝑝1=0 then (𝑝spin 12𝜉𝑝spin ◊12𝜉)=(𝑝0)12(𝜉𝜉)

(𝑝spin 12𝜉𝑝spin ◊12𝜉)†(𝑝spin 12𝜉𝑝spin ◊12𝜉)=𝜉†(𝑝spin +𝑝 spin◊)𝜉=(2𝑝0)|𝜉|2=(tr 𝑝 spin)|𝜉|2

1,3 metric square root or ∆ square root (𝑝spin ◊𝑝spin )(𝑝 spin 𝑝 spin ◊)=(det 𝑝 spin)(𝟙𝟙). But you can also use 𝑝spin ⇝(𝑝 spin◊𝑝 spin) to get the true square (𝑝spin ◊𝑝spin )2=(det 𝑝 spin)𝟙

Since (𝑝spin 𝑝spin ◊)2≠(det 𝑝 spin)𝟙, the transformation (𝑝spin 𝑝spin ◊)⇝(𝑝 spin𝑝 spin◊) does not come from GL(4,ℂ) coordinate change 𝑇−1⋅𝑀⋅𝑇

square-root-of-harmonic-oscillator_(tag)

Inspired by the treatment of KG field quantization

(∂02−∂𝑥2+𝑚2)𝑒(𝑝0(𝑝)𝑥0−𝑝𝑥)(± i)=0(∂02+𝑝2+𝑚2)𝑒(𝑝0(𝑝)𝑥0−𝑝𝑥)(± i)=0

We can also define a square root of a point particle complex harmonic oscillator.

Dirac plane wave (𝑢𝑣)𝑒− i 𝑝𝑥 with 𝑝2=𝑚2 and ((𝑝spin 𝑝spin ◊)−𝑚(𝟙𝟙))(𝑢𝑣)=0

((i ∂ spin◊i ∂ spin)−𝑚(𝟙𝟙))(𝑢𝑣)𝑒− i 𝑝𝑥=0((i ∂0i ∂0)+(𝑝 spin −𝑝spin)−𝑚(𝟙𝟙))(𝑢𝑣)𝑒− i 𝑝𝑥=0

Lagrangian 𝐿((ϕ𝜓),∂0(ϕ𝜓))=(ϕ𝜓)†(i ∂0+𝑝 spin−𝑚𝟙−𝑚𝟙i ∂0−𝑝 spin)(ϕ𝜓)

The conditions satisfied by the − i plane wave (𝑢𝑣)𝑒i 𝑝𝑥 are

((−𝑝 spin𝑝spin )+𝑚(𝟙𝟙))(𝑢𝑣)=0

Write the equation of the harmonic oscillator square root as a constant coefficient ODE

∂0(ϕ𝜓)=−i (−𝑝spin𝑚𝟙𝑚𝟙𝑝 spin )(ϕ𝜓)

Perform exp transformation. Use (−𝑝spin𝑚𝟙𝑚𝟙𝑝spin )2=(𝑝2+𝑚2)(𝟙𝟙)=𝐸2(𝟙𝟙) The series rule is

2𝑛→(−i 𝐸𝑡)2𝑛(2𝑛)!(𝟙𝟙)→ cos (𝐸𝑡)∗2𝑛+1→(−i 𝐸𝑡)2𝑛+1(2𝑛+1)!1𝐸(−𝑝spin𝑚𝟙𝑚𝟙𝑝 spin )→− i sin(𝐸𝑡)∗

The result is

(cos(𝐸𝑡)𝟙+ i sin(𝐸𝑡)𝑝 spin𝐸− i sin(𝐸𝑡)𝑚𝐸𝟙− i sin(𝐸𝑡)𝑚𝐸𝟙cos(𝐸𝑡)𝟙− i sin(𝐸𝑡)𝑝 spin𝐸)

motivation-of-gauge-field_(tag)

Ignored some issues

Tangent projective light cone bundle is well-defined

But is a ℂ2 field or a ℂℙ1 field needed? There are too many choices to lift a ℂℙ1 field to a ℂ2 field (or to a ℂ2∖0 field); all lifting choices form a GL(1,ℂ)=ℝ>0× U (1) field

And there are only two ways to lift SO(1,3) to SL(2,ℂ)

On a curved manifold, there may not even be a global single-valued lift.

The change in the lifting method from a ℂℙ1 field to a ℂ2 field corresponds to "changing the gauge", by multiplying the spinor ϕ(𝑥) by 𝑎(𝑥)=|𝑎(𝑥)|exp(𝜃 i) to change the gauge.

If the conserved current of the action is to be simpler, then use U (1) gauge transformation instead of GL(1,ℂ)= U (1)×ℝ>0. U (1) does not change the Lagrangian action, which simplifies the calculation of conserved currents (cf. the case of scalar field calculating 4-current for U (1) symmetry).

Changing the gauge is not compatible with taking derivatives of tangent spaces in bundle coordinates, so an additional structure — #link(<principal-bundle-connection>)[connection] — must be introduced.

There are many possible connections. A good connection is one with the smallest curvature cf. #link(<electromagnetic-field>)[]

The ℂ2 bundle in curved spacetime can be directly defined in the bundle coordinates of the SO(1,3) principal bundle (orthonormal frame bundle). Using the #link(<Lorentz-group-spinor-representation>)[$SL(1,ℂ) ↠ SO(1,3)$ correspondence], changing SO(1,3) bundle coordinates automatically corresponds to changing SL(2,ℂ) bundle coordinates.

In curved spacetime, one needs to deal with the covariant derivative of the spinor field with respect to the metric, which is derived from the #link(<metric-connection>)[] of the tangent vector field.

For spinors, one might need to use an orthonormal frame instead of a coordinate frame, i.e., use SO(1,3),SL(2,ℂ) principal bundle. Does this introduce new difficulties for calculating covariant derivatives?

Even if the topology of the spacetime base manifold is non-trivial, there might exist different bundle types for gauge fields.

One problem is that, unlike spinor fields, gauge bundles do not seem to be directly related to tangent bundles.

It seems that all types of U (1) bundle types based on the base manifold must be considered simultaneously.

In the homotopy sense, ℝ𝑝,𝑞 has only one type of U (1) bundle type.

spin-connection_(tag)

The #link(<principal-bundle>)[frame bundle] of SO(1,3) derived from the tangent bundle metric and the #link(<principal-bundle-connection>)[connection] of the SO(1,3) frame bundle derived from #link(<metric-connection>)[] behave as Γ is locally type (ℝ1,3)⊺⊗so(1,3), acting on ℝ1,3 tangent vector fields by ∂+Γ

The way to derive the spin-connection is to #link(<square-root-of-Lorentz-Lie-algebra>)[map the $so(1,3)$ part of the induced metric-connection $Γ$ to $sl(2,ℂ)$] in the orthonormal-frame, yielding the connection of the SL(2,ℂ) bundle, locally type (ℝ1,3)⊺⊗ℂ2, acting on the spinor field ℂ2 by ∂+𝜔 with 𝜔=𝜔𝜇𝜈14[𝜎𝜇,𝜎𝜈]◊

Although the definition of the Pauli matrix 𝜎 for spin representation requires 𝑔, both 𝑔 and Lie algebra can be expressed by the "square" of 𝜎 thereafter.

spin-connection also denoted by ∇

motivation-of-scalar-field_(tag) can scalar field be related to tautological bundle of projective-lightcone ℂℙ1?

According to the concept of spinor fields in ℝ1,3 spacetime manifold, "rotation by 720 degrees" and "parity" should occur in the tangent space construction, not in the spacetime manifold.

Since the tangent spaces of the spacetime manifold are all ℝ1,3, can spinor fields be generalized to general spacetime manifolds?

spinor-on-Lorentz-manifold_(tag) Question

massless-spinor-action

∫𝑑Vol(𝑔)(𝜓† i ∇ spin ◊𝜓)

massless-spinor-equation

∇spin ◊𝜓=0

I haven't verified if this definition is conceptually reasonable. Compare with flat spacetime, try to prove or disprove it.

  • i ∇ spin◊ is self-adjoint
  • Only Re (𝜓†∇ spin ◊𝜓) contributes to the variation of the action.
  • ∇spin ◊∇ spin =∇ spin ∇ spin ◊=12(∇†∇+∇∇†) i.e. square-root-of spacetime Laplacian (closer to the Laplacian of tangent vector fields rather than scalar fields)

massive-spinor-Lagrangian

∫𝑑Vol(𝑔)(ϕ𝜓)†((i ∇ spin◊i ∇ spin)+𝑚(𝟙𝟙))(ϕ𝜓)

massive-spinor-equation

((i ∇ spin◊i ∇ spin)+𝑚(𝟙𝟙))(ϕ𝜓)=0

Question As long as it locally quotients back from ℂ2 to ℂℙ1, it can avoid the problem of continuous global single-valued lift to ℂ2.

We know that the KG eq has a non-relativity approximation limit lim𝑐→∞. Does the massive-spinor construction have a non-relativity approximation limit lim𝑐→∞?

Static doesn't need a non-relativity approximation limit lim𝑐→∞, despite the presence of 𝑐, just like static electromagnetic field equations don't need a non-relativity approximation limit lim𝑐→∞. This is also true for the KG equation.

let ϕ(𝑡,𝑥)=ϕ(𝑥) static

static massless spinor eq

𝜎𝑖∂𝑖ϕ=0

static massive spinor eq

((− i 𝜎𝑖∂𝑖i 𝜎𝑖∂𝑖)+𝑚𝑐ℏ(𝟙𝟙))(ϕ𝜓)=0

They can couple to static electromagnetic gauge potential (𝑉(𝑥),𝐴1,2,3(𝑥)) or just static electric 𝑉(𝑥) or just static magnetic 𝐴1,2,3(𝑥)

In the presence of electromagnetic potential, the parity dual of massless particles might be different, for example, just static electric 𝜎𝑖∂𝑖ϕ± i 𝑉ϕ=0

When electromagnetic potential = 0, the parity dual eq is the same.