1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

let mapping 1,โ€ฆ,๐‘›โ‡๐‘Ž1,โ€ฆ,๐‘Ž๐‘›

permutation_(tag) The following are equivalent

  • 1,โ€ฆ,๐‘› bijection
  • 1,โ€ฆ,๐‘› permutation
  • ๐‘› order permutation. Quantity ๐‘›(๐‘›โˆ’1)โ‹ฏ1=๐‘›!. Usually denoted as ๐‘†๐‘›

combination_(tag) The following are equivalent

  • Select subset ๐ด with |๐ด|=๐‘– from Subsetย {1,โ€ฆ,๐‘›}
  • Select subsets ๐ด,๐ตโˆˆย Subsetย {1,โ€ฆ,๐‘›} with
partition {1,โ€ฆ,๐‘›}=๐ดโŠ”๐ต
|๐ด|=๐‘–,|๐ต|=๐‘—
|๐ด|+|๐ต|=๐‘–+๐‘—=๐‘›
  • Select a permutation ๐‘Ž with ๐ด={๐‘Ž(1),โ€ฆ,๐‘Ž(๐‘–)},๐ต={๐‘Ž(๐‘–+1),โ€ฆ,๐‘Ž(๐‘–+๐‘—)} and another permutation ๐‘Žโ€ฒ gives the same partition if
{๐‘Žโ€ฒ(1),โ€ฆ,๐‘Žโ€ฒ(๐‘–)}={๐‘Ž(1),โ€ฆ,๐‘Ž(๐‘–)}{๐‘Žโ€ฒ(๐‘–+1),โ€ฆ,๐‘Žโ€ฒ(๐‘–+๐‘—)}={๐‘Ž(๐‘–+1),โ€ฆ,๐‘Ž(๐‘–+๐‘—)}

Define the quotient_(tag) ๐‘Žโˆผ๐‘Žโ€ฒ of permutations with the same partition as a subset of ๐‘†๐‘› that satisfies the above conditions, i.e., the inverse image of the partitioning possibility ๐ดโŠ”๐ต

<==> (โˆƒ๐‘๐‘–โˆˆ๐‘†๐‘–)โˆง(โˆƒ๐‘๐‘—โˆˆ๐‘†๐‘—),(๐‘๐‘–,๐‘๐‘—)๐‘Ž=๐‘Žโ€ฒ

Cardinality calculation

|๐‘†๐‘›||๐‘†๐‘–ร—๐‘†๐‘—|=๐‘›!๐‘–!๐‘—!=๐‘›!๐‘–!(๐‘›โˆ’๐‘–)!

Denoted as

(๐‘›๐‘–)=(๐‘›๐‘–,๐‘—)

All ๐‘–=0,โ€ฆ,๐‘› combinations <==> All ๐‘–=0,โ€ฆ,๐‘› select subsets ๐ด with |๐ด|=๐‘– in Subsetย {1,โ€ฆ,๐‘›}

โˆ‘๐‘–+๐‘—=๐‘›(๐‘›๐‘–,๐‘—)orโˆ‘๐‘–=0..๐‘›(๐‘›๐‘–)=|Subsetย {1,โ€ฆ,๐‘›}|=2๐‘›

is the number of repeatable selections of ๐‘› from 2

from can be calculated by induction or observed directly, we can get

๐‘›!๐‘–!๐‘—!=(๐‘›โˆ’1)!(๐‘–+๐‘—)๐‘–!๐‘—!=(๐‘›โˆ’1๐‘–โˆ’1,๐‘—)+(๐‘›โˆ’1๐‘–,๐‘—โˆ’1)

binom-expansion_(tag)

(๐‘ฅ+๐‘ฆ)๐‘›=โˆ‘๐‘–+๐‘—=๐‘›(๐‘›๐‘–,๐‘—)๐‘ฅ๐‘–๐‘ฆ๐‘—(๐‘ฅ1+โ‹ฏ+๐‘ฅ๐‘‘)๐‘›=โˆ‘๐‘˜1+โ‹ฏ+๐‘˜๐‘‘=๐‘›(๐‘›๐‘˜1,โ€ฆ,๐‘˜๐‘‘)๐‘ฅ1๐‘˜1โ‹ฏ๐‘ฅ๐‘‘๐‘˜๐‘‘

vs Newton binomial (1+๐‘ฅ)๐‘=โˆ‘๐‘–=0..โˆž(๐‘๐‘–)๐‘ฅ๐‘–,๐‘โˆˆโ„

multi-combination_(tag) Similarly, the following are equivalent

  • ๐‘‘ multi-combination. 1,โ€ฆ,๐‘› select ๐‘˜1,โ€ฆ,๐‘˜๐‘‘ with ๐‘˜1+โ‹ฏ+๐‘˜๐‘‘=๐‘›
  • partition {1,โ€ฆ,๐‘›}=๐ด1โŠ”โ‹ฏโŠ”๐ด๐‘‘ with |๐ด๐‘–|=๐‘˜๐‘– and ๐‘˜1+โ‹ฏ+๐‘˜๐‘‘=๐‘›
  • Select permutation, and quotient

    (๐‘›๐‘˜1,โ€ฆ,๐‘˜๐‘‘)=|๐‘†๐‘›||๐‘†๐‘˜1ร—โ‹ฏร—๐‘†๐‘˜๐‘‘|=๐‘›!๐‘˜1!,โ€ฆ,๐‘˜๐‘‘!

Total number โˆ‘๐‘˜1,โ€ฆ,๐‘˜๐‘‘โˆˆโ„•๐‘˜1+โ‹ฏ+๐‘˜๐‘‘=๐‘›(๐‘›๐‘˜1,โ€ฆ,๐‘˜๐‘‘)=๐‘‘๐‘›, which is the number of selecting ๐‘› times from ๐‘‘ with replacement ๐‘‘๐‘›

Proof

Selecting ๐‘› times with replacement from 1,โ€ฆ,๐‘‘, number ๐‘‘๐‘› <==> number of mappings 1,โ€ฆ,๐‘›โ†’1,โ€ฆ,๐‘‘, |{1,โ€ฆ,๐‘‘}||{1,โ€ฆ,๐‘›}|

Any selection can be permuted to 1,โ€ฆ,1โŸ๐‘˜1,2,โ€ฆ,2โŸ๐‘˜2,โ€ฆ,๐‘‘,โ€ฆ,๐‘‘โŸ๐‘˜๐‘‘ with ๐‘˜1+โ‹ฏ+๐‘˜๐‘‘=๐‘›

Restoring all the order is selecting ๐‘˜1,โ€ฆ,๐‘˜๐‘‘ positions from 1,โ€ฆ,๐‘›, which is multinomial coefficient (๐‘›๐‘˜1,โ€ฆ,๐‘˜๐‘‘). This gives

โˆ‘๐‘˜1,โ€ฆ,๐‘˜๐‘‘โˆˆโ„•๐‘˜1+โ‹ฏ+๐‘˜๐‘‘=๐‘›(๐‘›๐‘˜1,โ€ฆ,๐‘˜๐‘‘)=๐‘‘๐‘›

what is |{๐‘˜1,โ€ฆ,๐‘˜๐‘‘โˆˆโ„•:๐‘˜1+โ‹ฏ+๐‘˜๐‘‘=๐‘›}|?

Example Quantity 10, number of groups 4. ๐‘›=10,๐‘‘=4,๐‘˜(1,โ€ฆ,4)=3,2,0,5

star & bar model

โ˜… โ˜… โ˜… | โ˜… โ˜… | | โ˜… โ˜… โ˜… โ˜… โ˜…

Selecting ๐‘‘โˆ’1 positions from ๐‘›+๐‘‘โˆ’1 positions as bar, dividing ๐‘› โ˜… into ๐‘‘ groups. Number

(๐‘›+๐‘‘โˆ’1๐‘‘โˆ’1)=(๐‘›+๐‘‘โˆ’1๐‘›,๐‘‘โˆ’1)

dimension-of-symmetric-tensor_(tag) The dimension of symmetric tensor space (๐•‚๐‘›)โŠ™๐‘˜ is also (๐‘˜+๐‘›โˆ’1๐‘˜,๐‘›โˆ’1), basis ๐‘’1โŠ™๐‘˜1โŠ™โ‹ฏโŠ™๐‘’๐‘›โŠ™๐‘˜๐‘›

The repetition number (๐‘›๐‘˜1,โ€ฆ,๐‘˜๐‘‘) will be used for example to calculate ๐ฟ2 normalization

conjugate-class-of-permutation-is-cycle_(tag) #link(<conjugate-class>)[] of ๐‘†๐‘› <==> cycle := permutation ๐‘Ž with ๐‘–1โ‡๐‘Ž๐‘–2โ‡๐‘Žโ‹ฏโ‡๐‘Ž๐‘–๐‘˜โ‡๐‘Ž๐‘–1

The sign decomposition of permutation

Tensor space's sign decomposition, โŠ• irreducible represenation