1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

use alternation of #link(<tensor-induced-quadratic-form>)[]

โŸจ๐‘ฃ1โˆงโ‹ฏโˆง๐‘ฃ๐‘˜,๐‘ค1โˆงโ‹ฏโˆง๐‘ค๐‘˜โŸฉ=ย detย โŸจ๐‘ฃ๐‘–,๐‘ค๐‘—โŸฉ

Iterate through all ๐‘–1<โ‹ฏ<๐‘–๐‘˜, orthonormal bases ๐‘’๐‘–1โˆงโ‹ฏโˆง๐‘’๐‘–๐‘˜ with โŸจ๐‘’๐‘–1โˆงโ‹ฏโˆง๐‘’๐‘–๐‘˜โŸฉ2=โŸจ๐‘’๐‘–1โŸฉ2โ‹ฏโŸจ๐‘’๐‘–๐‘˜โŸฉ2, to obtain the signature

let ๐‘ฃ,๐‘คโˆˆโ„๐‘›. ๐‘ฃ,๐‘ค span โ„2 <==> ๐‘ฃโˆง๐‘คโ‰ 0

Abbreviation โŸจ๐‘ฃ,๐‘คโŸฉโ‰”โŸจ๐‘ฃ,๐‘คโŸฉ,โŸจ๐‘ฃโŸฉ2โ‰”โŸจ๐‘ฃ,๐‘ฃโŸฉ,|๐‘ฃ|โ‰”(โŸจ๐‘ฃโŸฉ2)12

quadratic-form-inequality-Euclidean_(tag) Inner product inequality (Euclidean). 0โ‰คโŸจ๐‘ฃโˆง๐‘คโŸฉ2=ย detย (โŸจ๐‘ฃโŸฉ2โŸจ๐‘ฃ,๐‘คโŸฉโŸจ๐‘ค,๐‘ฃโŸฉโŸจ๐‘คโŸฉ2)=โŸจ๐‘ฃโŸฉ2โŸจ๐‘คโŸฉ2โˆ’โŸจ๐‘ค,๐‘ฃโŸฉ2. i.e. โŸจ๐‘ค,๐‘ฃโŸฉ2โ‰คโŸจ๐‘ฃโŸฉ2โŸจ๐‘คโŸฉ2 or โŸจ๐‘ฃ,๐‘คโŸฉโ‰ค|๐‘ฃ||๐‘ค|

triangle-inequality-Euclidean_(tag) Triangle inequality (Euclidean)

  • |๐‘ฃ+๐‘ค|โ‰ค|๐‘ฃ|+|๐‘ค|

    Proof

    โŸจ๐‘ฃ+๐‘คโŸฉ2=โŸจ๐‘ฃโŸฉ2+2โŸจ๐‘ฃ,๐‘คโŸฉ+โŸจ๐‘คโŸฉ2โ‰ฅโŸจ๐‘ฃโŸฉ2+2|๐‘ฃ||๐‘ค|+โŸจ๐‘คโŸฉ2=(|๐‘ฃ|+|๐‘ค|)2
  • |๐‘ฃโˆ’๐‘ค|โ‰ฅ||๐‘ฃ|โˆ’|๐‘ค||

    Proof

    |๐‘ฃ|โ‰ค|๐‘ฃโˆ’๐‘ค|+|๐‘ค||๐‘ค|โ‰ค|๐‘ฃโˆ’๐‘ค|+|๐‘ฃ|

Euclidean-space-topology_(tag) Euclidean โ„๐‘‘ topology. ๐‘“:โ„๐‘‘โ†’โ„๐‘‘โ€ฒ is continuous at ๐‘Žโˆˆโ„๐‘‘ :=

โˆ€๐œ€>0,โˆƒ๐›ฟ>0,โˆ€๐‘ฅ:|๐‘ฅโˆ’๐‘Ž|<๐›ฟ,|๐‘“(๐‘ฅ)โˆ’๐‘“(๐‘Ž)|<๐œ€

let ๐ดโŠ‚โ„๐‘‘

closure_(tag) Closure := ๐ดฬ„={๐‘ฅโˆˆโ„๐‘‘:inf๐‘ฅโˆˆ๐ด|๐‘ฅโˆ’๐‘Ž|=0}

closed-set_(tag) Closed set := ๐ดฬ„=๐ด

(open) closed(๐”น) ๐”น(๐‘Ž,๐‘Ÿ)โ‰”{๐‘ฅโˆˆโ„๐‘‘:|๐‘ฅโˆ’๐‘Ž|<๐‘Ÿ}

open-set_(tag) Open set ๐‘ˆโŠ‚โ„๐‘‘ := โˆ€๐‘ฅโˆˆ๐‘ˆ,โˆƒ๐‘Ÿ>0,๐”น(๐‘ฅ,๐‘Ÿ)โŠ‚๐‘ˆ

๐ด open <==> ๐ดโˆ closed

interval_(tag) Interval refers to a subset ๐ผ of โ„ with property that the order is uninterrupted

โ‹€๐‘Ž,๐‘โˆˆ๐ผ๐‘Žโ‰ค๐‘โ‹€๐‘ฅโˆˆโ„๐‘Žโ‰ค๐‘ฅโ‰ค๐‘๐‘ฅโˆˆ๐ผ

best-interval-decomposition_(tag) The optimal interval decomposition of ๐ดโŠ‚โ„

def Intervalย โŠ‚Subset(โ„) as the set of all intervals, including open, closed, half open half closed, single point

def Jย (๐ด)โ‰”{๐ผโŠ‚๐ด:๐ผโˆˆย Interval}

Due to the existence of single-point intervals, Jย โ‰ โˆ… and โ‹ƒย Jย =๐ด

Jย (๐ด) has a โŠ‚ #link(<linear-order>)[linear order chain]. Taking โ‹ƒ for each maximal linear order chain will continue to yield intervals. The set of these intervals is denoted as Iย (๐ด)

Iย (๐ด)โ‰ โˆ… and โจ†ย Iย (๐ด)=๐ด

The intervals in I are disjoint, and the decomposition method is unique, so these intervals form the optimal interval decomposition of ๐ด

  • When |Iย (๐ด)|=1, ๐ด is an interval, connected
  • When |Iย (๐ด)|>1, ๐ด is not connected. Example โ„โˆ–0=โ„<0โŠ”โ„>0,โ„š=โจ†๐‘ฅโˆˆโ„š{๐‘ฅ}

If ๐ด is a closed set, then the intervals in Iย (๐ด) are all closed intervals

recall the โŠ‚ #link(<linear-order>)[] #link(<nested-closed-interval-theorem>)[intersection of nested closed intervals is non-empty]

bounded-closed-interval-is-compact_(tag) Bounded closed interval of โ„ ==> #link(<compact>)[]

Proof

let B be a #link(<net>)[net] of ๐ด. let ๐ตโˆˆย B

Since ๐ดโŠ‚โ„ is bounded and closed, ๐ตฬ„โŠ‚๐ด

Take the optimal closed interval decomposition ๐ตฬ„=โจ†ย Iย (๐ตฬ„)

For all decomposed closed intervals of ๐ตโˆˆย B, consider any โŠ‚ maximal linear order chain #link(<maximal-linear-order>)[] C

According to #link(<nested-closed-interval-theorem>)[], the intersection of a nested set of closed intervals in the โŠ‚ linear order is a non-empty closed interval โ‹‚ย Cย โ‰ โˆ…

Similar to the proof of #link(<closed-interval-net-theorem>)[], prove that โ‹‚ย C is the smallest closed interval, thus โŠ‚ every ๐ตโˆˆย B

compact-imply-subsequence-converge_(tag) ๐ด compact ==> sequence {๐‘ฅ๐‘›}โŠ‚๐ด has a convergent subsequence. The same applies to nets

Proof

๐ต๐‘›={๐‘ฅ๐‘›,๐‘ฅ๐‘›+1,โ€ฆ} forms a net B

๐ด compact ==> โ‹‚๐‘›โˆˆโ„•๐ตฬ„๐‘›โ‰ โˆ…

let ๐‘ฅโˆˆโ‹‚๐‘›โˆˆโ„•๐ตฬ„๐‘›

use the definition of closure ๐ตฬ„๐‘›

๐‘ฅโˆˆ๐ตฬ„๐‘›โŸบโˆ€๐œ€๐‘›>0,โˆƒ๐‘–๐‘›>๐‘–๐‘›โˆ’1,|๐‘ฅ๐‘–๐‘›โˆ’๐‘ฅ|<๐œ€๐‘›

let ๐œ€๐‘›โ†’0

==> โˆ€๐œ€>0,โˆƒ๐‘โˆˆโ„•,โˆ€๐‘›>๐‘,|๐‘ฅ๐‘–๐‘›โˆ’๐‘ฅ|<๐œ€

  • Unit closed ball ๐”นฬ„๐‘›โ‰”{๐‘ฅโˆˆโ„๐‘›:๐‘ฅ2โ‰ค1}
  • Unit sphere ๐•Š๐‘›โˆ’1โ‰”{๐‘ฅโˆˆโ„๐‘›:๐‘ฅ2=1}

circle-is-compact_(tag) ๐•Š1 compact

Proof ๐‘’iย ๐œƒ:โ„โ†’๐•Š1 is continuous

๐•Š1 is continuously isomorphic to โ„โ„ค (#link(<quotient-topology>)[]) is continuously isomorphic to ๐”นฬ„1๐•Š0 i.e. [โˆ’1,1]=๐”นฬ„1 collapsing endpoints {โˆ’1,1}=๐•Š0 (quotient-topology)

๐”นฬ„1=[โˆ’1,1] bounded closed interval compact ==> quotient ๐•Š1=๐”นฬ„๐‘›๐•Š0 compact. by #link(<quotient-topology-preserve-compact>)[quotient preserves compact]

closed-ball-sphere-is-compact_(tag)

Proof

๐”นฬ„1,๐•Š1 compact. Inductive hypothesis ๐”นฬ„๐‘›,๐•Š๐‘› compact

  • ๐”นฬ„๐‘›+1 compact
๐‘“:๐•Š๐‘›ร—[0,1]โŸถ๐”นฬ„๐‘›+1(๐‘ฅ,๐‘Ÿ)โŸฟ๐‘Ÿโ‹…๐‘ฅ

(Draw a picture) continuous. Isomorphism is obtained after quotienting the origin 0โˆˆโ„๐‘›+1

๐•Š๐‘›ร—[0,1] compact. by #link(<product-topology-preserve-compact>)[]

๐•Š๐‘›ร—[0,1]{0โˆˆโ„๐‘›+1}โ‰ƒ๐”นฬ„๐‘›+1 compact

  • ๐•Š๐‘›+1 compact

Constructing ๐•Š๐‘›+1 from ๐•Š๐‘› using polar coordinates, after quotient, we get ๐•Š๐‘›+1 compact

Another method ๐”นฬ„๐‘›+1 the boundary ๐•Š๐‘› collapses to a point to get ๐”นฬ„๐‘›+1๐•Š๐‘›โ‰ƒ๐•Š๐‘›+1 compact

Proof

11โˆ’|๐‘ฅ|2๐‘ฅ:๐”น๐‘›+1โ†”โ„๐‘›+1 maps the sphere ๐•Š(|๐‘ฅ|) to the sphere ๐•Š|๐‘ฅ|1โˆ’|๐‘ฅ|2 and ๐‘Ÿ1โˆ’๐‘Ÿ2:[0,1)โ†”โ„โ‰ฅ0

Stereographic projection โ„๐‘›+1โ†”๐•Š๐‘›+1โˆ–๐‘

The composite mapping ๐”น๐‘›+1โ†’๐•Š๐‘›+1โˆ–๐‘ plus the mapping โˆ‚๐”นฬ„๐‘›+1=๐•Š๐‘› mapping to ๐‘, the resulting ๐”นฬ„๐‘›+1โ†’๐•Š๐‘›+1 mapping is still continuous, and after quotient it is a bijection

Projective space (Euclidean) compact. Proof โ„โ„™๐‘›โ‰”โ„๐‘›+1{๐‘˜๐‘ฅ}โ‰ƒ๐•Š๐‘›{ยฑ๐‘ฅ}

Similarly โ„‚โ„™๐‘› (and โ„โ„™,๐•†โ„™)

Euclidean-set-distance_(tag) |๐ด|โ‰”sup๐‘ฅ,๐‘ฆโˆˆ๐ด|๐‘ฅโˆ’๐‘ฆ|

  • bounded_(tag) bounded := |๐ด|<โˆž
  • unbounded_(tag) unbounded := |๐ด|=โˆž

|๐ด| is SO(๐‘›)โ‹Šโ„๐‘› invariant

โ„โŠ”{โˆž}โ‰ƒ๐•Š๐‘› by stereographic projection

Translation does not change the infinity โˆž of โ„๐‘›โŠ”{โˆž} (but only a conformal mapping of โ„๐‘›โŠ”{โˆž}โ‰ƒ๐•Š๐‘›, conformal group SO(1,๐‘›))

in Euclidean topology of โ„๐‘›โŠ”{โˆž}โ‰ƒ๐•Š๐‘›

  • Bounded <==> away from โˆž <==> โˆžโˆ‰๐ดฬ„
  • Unbounded <==> โˆžโˆˆ๐ดฬ„

Euclidean-space-compact-iff-bounded-closed_(tag) ๐ดโŠ‚โ„๐‘› compact <==> ๐ด is a bounded closed set

Proof

  • <==

The bounded closed set ๐ด of โ„๐‘› corresponds to a closed set of โ„๐‘›โŠ”{โˆž} and does not include โˆž

๐•Š๐‘› compact + #link(<closed-set-in-compact-space-is-compact>)[] ==> ๐ด is compact in ๐•Š๐‘›

From โ„๐‘›โŠ”{โˆž} topology, restrict back to subspace โ„๐‘› topology + ๐ดโŠ‚โ„๐‘›

Get ๐ด compact

  • ==>
  • Closed set

let ๐‘ฅโˆˆ๐ดฬ„

๐”น(๐‘ฅ,๐‘Ÿ)โˆฉ๐ด forms a net of ๐ด. Note that it is possible that ๐‘ฅโˆ‰๐”น(๐‘ฅ,๐‘Ÿ)โˆฉ๐ด

  • compact ==> โˆ…โ‰ โ‹‚๐‘Ÿ>0๐”นฬ„(๐‘ฅ,๐‘Ÿ)โˆฉ๐ดโŠ‚๐ด

  • โ‹‚๐‘Ÿ>0๐”นฬ„(๐‘ฅ,๐‘Ÿ)=๐‘ฅ

==> โˆ…โ‰ {๐‘ฅ}โˆฉ๐ดโŸน๐‘ฅโˆˆ๐ด

  • Bounded
The open ball of โ„๐‘‘ does not contain โˆž. The open ball family {๐”น(๐‘ฅ,๐‘Ÿ)โŠ‚โ„๐‘›:(๐‘ฅโˆˆ๐ด)โˆง(๐‘Ÿ>0)} covers ๐ด. Take #link(<compact-finite-open-cover>)[finite cover], still does not contain โˆž

let B be net of โ„๐‘›

nested-closed-set-theorem_(tag) The intersection of nested bounded closed sets of โ„๐‘› is non-empty. The intersection result is also a closed set. It can be understood as the minimal element of โŠ‚ linear order chain nested closed sets

closed-net-theorem_(tag) The intersection of a net of bounded closed sets of โ„๐‘› is non-empty Proof

Map the closed set of โ„๐‘› to the closed set of โ„๐‘›โŠ”{โˆž}โ‰ƒ๐•Š๐‘›, ๐•Š๐‘› is compact, so the intersection of nested closed sets or the intersection of a net of closed sets is non-empty. Boundedness makes it not converge to โˆž

limit-distance-vanish-net_(tag) := limย ๐ตโˆˆย B|๐ต|=0

or โˆ€๐œ€>0,โˆƒ๐ตโˆˆย B,|๐ต|<๐œ€. The tail of the net is bounded

A net can be composed of tails ๐ต๐‘›={๐‘ฅ๐‘›,๐‘ฅ๐‘›+1,โ€ฆ}

Cauchy-completeness-Euclidean_(tag)

in โ„๐‘›, limit-distance-vanish net converges to a point

According to the closed set net theorem ==> let ๐‘ฅโˆˆโ‹‚๐ตโˆˆย B๐ตฬ„โ‰ โˆ…

limit-distance-vanish lim๐ตโˆˆย B|๐ต|=0 ==> โ‹‚๐ตโˆˆย B๐ตฬ„={๐‘ฅ}

Some infinite-dimensional linear spaces e.g. #link(<Lebesgue-integrable>)[] ๐ฟ1, bounded closed sets cannot be compact but still satisfy limit-distance-vanish net converging to a point

According to induction, finite summation is associative and commutative. But this does not guarantee infinite summation i.e.

let

  • Rearrangement ๐‘“:โ„•โ†”โ„•
  • ๐‘ฅ๐‘›=๐‘Ž1+โ‹ฏ+๐‘Ž๐‘› converges to ๐‘ฅ

Then ๐‘ฆ๐‘›=๐‘Ž๐‘“(1)+โ‹ฏ+๐‘Ž๐‘“(๐‘›) may not converge or converge to other value ๐‘ฆโ‰ ๐‘ฅ

compare

  • โˆ‘1๐‘›=โˆž
  • โˆ‘(โˆ’1)๐‘›+11๐‘›=log(1+1)=log(2)

Convergence (not ==>) Absolute convergence

let ๐‘Ž๐‘› be a sequence โ„•โ†’โ„

  • โˆ‘..โˆž๐‘Ž๐‘› converges ==> limย ๐‘›โ†’โˆž๐‘Ž๐‘›=0

    Proof โˆ€๐œ€>0,โˆƒ๐‘โˆˆโ„•,โˆ€๐‘›>๐‘,|โˆ‘๐‘–=1..๐‘›๐‘Ž๐‘–โˆ’๐‘Ž|<๐œ€2

    ==> By the triangle inequality

    |๐‘Ž๐‘›|=|โˆ‘๐‘–=1..๐‘›+1๐‘Ž๐‘–โˆ’โˆ‘๐‘–=1..๐‘›๐‘Ž๐‘–|โ‰ค|โˆ‘๐‘–=1..๐‘›+1๐‘Ž๐‘–โˆ’๐‘Ž|+|โˆ‘๐‘–=1..๐‘›๐‘Ž๐‘–โˆ’๐‘Ž|<๐œ€
  • limย ๐‘›โ†’โˆž๐‘Ž๐‘›โ‰ 0 ==> โˆ‘..โˆž๐‘Ž๐‘› does not converge

Any sequence ๐‘ฅ๐‘› can define ๐‘Ž๐‘›=๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›โˆ’1 such that ๐‘ฅ๐‘›=๐‘Ž1+โ‹ฏ+๐‘Ž๐‘›

Rearrangement ๐‘“:โ„•โ†”โ„• does not change the tail behavior of the sequence limย ๐‘›โ†’โˆž๐‘Ž๐‘“(๐‘›)=ย limย ๐‘›โ†’โˆž๐‘Ž๐‘›

If ๐‘Ž๐‘›โ‰ฅ0, โˆ‘๐‘Ž๐‘› rearrangement invariant

Proof

โˆ‘๐‘Ž๐‘›<โˆžโŸนโˆ€๐œ€>0,โˆƒ๐‘โˆˆโ„•,โˆ€๐‘š>โ„•,โˆ‘๐‘Ž๐‘›โˆ’๐œ€<โˆ‘๐‘›=0..๐‘š๐‘Ž๐‘›โ‰คโˆ‘๐‘Ž๐‘›

๐‘โ€ฒโ‰”max{๐‘“โˆ’1(1),โ€ฆ,๐‘“โˆ’1(๐‘)}

==> {1,โ€ฆ,๐‘}โŠ‚{๐‘“(1),โ€ฆ,๐‘“(๐‘โ€ฒ)}

==> โˆ€๐‘€>๐‘โ€ฒ,โˆ‘๐‘Ž๐‘›โˆ’๐œ€โ‰คโˆ‘๐‘›=0..๐‘๐‘Ž๐‘›โ‰คโˆ‘๐‘›=0..๐‘€๐‘Ž๐‘“(๐‘›)โ‰คโˆ‘๐‘Ž๐‘› (by ๐‘Ž๐‘›โ‰ฅ0)

==> limย ๐‘€โ†’โˆžโˆ‘๐‘›=0..๐‘€๐‘Ž๐‘“(๐‘›)=โˆ‘๐‘Ž๐‘›

def

๐‘Ž๐‘›+โ‰”switch(๐‘Ž๐‘›){โ‰ฅ0โ‡’๐‘Ž๐‘›<0โ‡’0๐‘Ž๐‘›โˆ’โ‰”switch(๐‘Ž๐‘›){โ‰ฅ0โ‡’0<0โ‡’โˆ’๐‘Ž๐‘›๐‘Ž๐‘›+,๐‘Ž๐‘›โˆ’โ‰ฅ0๐‘Ž๐‘›=๐‘Ž๐‘›+โˆ’๐‘Ž๐‘›โˆ’โˆ‘|๐‘Ž๐‘›|<โˆžโŸบโˆ‘๐‘Ž๐‘›+,โˆ‘๐‘Ž๐‘›โˆ’<โˆž

series-rearrangement-absolutely-convergence-real_(tag) Absolute convergence โˆ‘..โˆž|๐‘Ž๐‘›| ==> โˆ‘..โˆž๐‘Ž๐‘› converges and rearrangement invariant

Proof ๐‘Ž๐‘›=๐‘Ž๐‘›+โˆ’๐‘Ž๐‘›โˆ’ and use operation of convergent sequence

limย โˆ‘..๐‘๐‘Ž๐‘›=ย limย โˆ‘..๐‘๐‘Ž๐‘›+โˆ’ย limย โˆ‘..๐‘๐‘Ž๐‘›โˆ’

โˆ‘๐‘Ž๐‘›+=โˆž and โˆ‘๐‘Ž๐‘›โˆ’<โˆž ==> โˆ‘๐‘Ž๐‘›=+โˆž and rearrangement invariant

Question The case of ๐‘™2 norm (โˆ‘|๐‘Ž๐‘›|2)12 reduce to ๐‘๐‘›=|๐‘Ž๐‘›|2?

harmonic series โˆ‘1๐‘›=โˆž vs โˆ‘1๐‘›2=๐œ‹26, say that, ๐‘™1 convergence is closer to normal convergence. ๐‘™2 convergence is more suitable for Fourier serise

The last possibility

series-rearrangement-real_(tag)

let limย ๐‘›โ†’โˆž๐‘Ž๐‘›=0 and โˆ‘๐‘Ž๐‘›+=โˆ‘๐‘Ž๐‘›โˆ’=โˆž

โˆƒ๐‘“:โ„•โ†”โ„•,โˆ‘๐‘Ž๐‘“(๐‘›)

  • Converges to โ„,+โˆž,โˆ’โˆž
  • Does not converge to โ„,+โˆž,โˆ’โˆž

Example

  • Convergent case ๐‘Ž๐‘›=(โˆ’1)๐‘›+11๐‘›
  • Divergent case ๐‘Ž๐‘›=(โˆ’1)๐‘›

Proof

  • Converges to ๐ดโˆˆโ„

๐‘1โ‰”inf{๐‘โˆˆโ„•:๐ด<โˆ‘..๐‘๐‘Ž๐‘›+}. Meaning: ๐‘1 is the smallest natural number that makes the positive summation greater than ๐ด

๐‘ž1โ‰”inf{๐‘žโˆˆโ„•:๐ด>โˆ‘..๐‘1๐‘Ž๐‘›+โˆ’โˆ‘..๐‘ž๐‘Ž๐‘›โˆ’}. Meaning: ๐‘ž1 is the smallest natural number that makes the negative summation less than ๐ด

๐‘2โ‰”inf{๐‘โˆˆโ„•:๐ด>โˆ‘..๐‘๐‘Ž๐‘›+โˆ’โˆ‘..๐‘ž1๐‘Ž๐‘›โˆ’}

And so on, exhaust all ๐‘Ž๐‘›

Rearrange ๐‘Ž1,๐‘Ž2,โ€ฆ to

๐‘Ž1+,โ€ฆ,๐‘Ž๐‘1+โˆ’๐‘Ž1โˆ’,โ€ฆ,โˆ’๐‘Ž๐‘ž1โˆ’๐‘Ž๐‘1+1+,โ€ฆ,๐‘Ž๐‘2+โ‹ฎ

According to the definition of ๐‘๐‘+1

0<(โˆ‘1๐‘๐‘+1๐‘Ž๐‘›+โˆ’โˆ‘1๐‘ž๐‘๐‘Ž๐‘›โˆ’)โˆ’๐ดโ‰ค(โˆ‘1๐‘๐‘+1๐‘Ž๐‘›+โˆ’โˆ‘1๐‘ž๐‘๐‘Ž๐‘›โˆ’)โˆ’(โˆ‘1๐‘๐‘+1โˆ’1๐‘Ž๐‘›+โˆ’โˆ‘1๐‘ž๐‘๐‘Ž๐‘›โˆ’)=๐‘Ž๐‘๐‘+1+

According to the definition of ๐‘ž๐‘+1

0<(โˆ‘1๐‘๐‘+1๐‘Ž๐‘›+โˆ’โˆ‘1๐‘ž๐‘,โ€ฆ,๐‘ž๐‘+1โˆ’1๐‘Ž๐‘›โˆ’)โˆ’๐ดโ‰ค๐‘Ž๐‘๐‘+1+

And so on

โˆ’๐‘Ž๐‘ž๐‘+1โˆ’โ‰ค(โˆ‘1๐‘๐‘+1,โ€ฆ,๐‘๐‘+2โˆ’1๐‘Ž๐‘›+โˆ’โˆ‘1๐‘ž๐‘+1๐‘Ž๐‘›โˆ’)โˆ’๐ด<0

limย ๐‘›โ†’โˆž๐‘Ž๐‘›=0โŸนย limย ๐‘โ†’โˆž๐‘Ž๐‘๐‘+=ย limย ๐‘โ†’โˆž๐‘Ž๐‘ž๐‘โˆ’=0

==> limย ๐‘โ†’โˆžโˆ‘..๐‘๐‘Ž๐‘›=๐ด

  • Converges to +โˆž

In the handling of ๐ดโˆˆโ„

Change ๐ด<โˆ‘1โ‹ฏ๐‘Ž๐‘›+โˆ’โˆ‘1โ‹ฏ๐‘Ž๐‘›โˆ’ to ๐‘<โˆ‘1โ‹ฏ๐‘Ž๐‘›+โˆ’โˆ‘1โ‹ฏ๐‘Ž๐‘›โˆ’

Change ๐ด>โ‹ฏ to ๐‘>โ‹ฏ

  • Does not converge to โ„,+โˆž,โˆ’โˆž

Change ๐ด<โ‹ฏ to 1<โ‹ฏ

Change ๐ด>โ‹ฏ to โˆ’1>โ‹ฏ

Series in โ„๐‘‘ that are rearrangement invariant are also absolutely convergent series

โˆ‘๐‘Ž๐‘› converges ==> limย ๐‘›โ†’โˆž๐‘Ž๐‘›=0

series-rearrangement-absolutely-convergence_(tag)

let ๐‘Ž๐‘› be a โ„•โ†’โ„๐‘‘ sequence

โˆ‘|๐‘Ž๐‘›|<โˆž ==> โˆ‘๐‘Ž๐‘› converges and is rearrangement invariant

Proof

  • โˆ‘๐‘Ž๐‘› converges. by using the triangle inequality |โˆ‘๐‘+1โˆž๐‘Ž๐‘›|โ‰คโˆ‘๐‘+1โˆž|๐‘Ž๐‘›| and โ„๐‘‘ #link(<Cauchy-completeness-Euclidean>)[Cauchy sequence converges]

  • Rearrangement invariant

โˆ€๐œ€>0,โˆƒ๐‘โˆˆโ„•,(|โˆ‘..๐‘๐‘Ž๐‘›โˆ’๐ด|<๐œ€2)โˆง(โˆ‘๐‘+1โˆž|๐‘Ž๐‘›|<๐œ€2)

๐‘โ€ฒโ‰”max{๐‘“โˆ’1(1),โ€ฆ,๐‘“โˆ’1(๐‘)}

{1,โ€ฆ,๐‘}โŠ‚{๐‘“(1),โ€ฆ,๐‘“(๐‘โ€ฒ)}

โˆ€๐‘€>๐‘โ€ฒ,|โˆ‘..๐‘€๐‘Ž๐‘“(๐‘›)โˆ’๐ด|โ‰ค|โˆ‘..๐‘๐‘Ž๐‘›โˆ’๐ด|+โˆ‘๐‘+1โˆž|๐‘Ž๐‘›|<๐œ€

Now consider the case where โˆ‘๐‘Ž๐‘› is not absolutely convergent

def ๐‘‰โ‰”{๐‘ฅโˆˆโ„๐‘‘:โˆ‘|โŸจ๐‘Ž๐‘›,๐‘ฅโŸฉ|<โˆž}

From the triangle inequality or the equivalence of 1-norm, 2-norm, โˆž-norm of โ„๐‘‘

  • ๐‘‰ is a linear subspace
  • ๐‘‰=โ„๐‘‘โŸนโˆ‘|๐‘Ž๐‘›|<โˆž

let ๐‘‰โ‰ โ„๐‘‘. The ๐‘‰ component of โˆ‘๐‘Ž๐‘› is absolutely convergent

Consider the ๐‘‰โŸ‚ component of โˆ‘๐‘Ž๐‘›

series-rearrangement_(tag)

let ๐‘ฅโˆˆ๐‘‰โŸ‚

  • โˆ‘โŸจ๐‘Ž๐‘›,๐‘ฅโŸฉ+=โˆž and โˆ‘โŸจ๐‘Ž๐‘›,๐‘ฅโŸฉโˆ’<โˆž ==> โˆ‘๐‘Ž๐‘› converges to โˆž in the ๐‘ฅ component, rearrangement invariant
  • โˆ‘โŸจ๐‘Ž๐‘›,๐‘ฅโŸฉ+=โˆ‘โŸจ๐‘Ž๐‘›,๐‘ฅโŸฉโˆ’=โˆž. โˆ‘๐‘Ž๐‘› is rearrangement unstable in the ๐‘ฅ component

The positive linear combination ๐‘˜๐‘Ž๐‘›+๐‘˜โ€ฒ๐‘Ž๐‘›โ€ฒ with sign(๐‘˜)=sign(๐‘˜โ€ฒ) of sequences with the same convergence pattern preserves their convergence pattern