1. notice
  2. English
  3. logic-topic
  4. 1. logic
  5. 2. set-theory
  6. 3. map
  7. 4. order
  8. 5. combinatorics
  9. calculus
  10. 6. real-numbers
  11. 7. limit-sequence
  12. 8. โ„^n
  13. 9. Euclidean-space
  14. 10. Minkowski-space
  15. 11. polynomial
  16. 12. analytic-Euclidean
  17. 13. analytic-Minkowski
  18. 14. analytic-struct-operation
  19. 15. ordinary-differential-equation
  20. 16. volume
  21. 17. integral
  22. 18. divergence
  23. 19. limit-net
  24. 20. topology
  25. 21. compact
  26. 22. connected
  27. 23. topology-struct-operation
  28. 24. exponential
  29. 25. angle
  30. geometry
  31. 26. manifold
  32. 27. metric
  33. 28. metric-connection
  34. 29. geodesic-derivative
  35. 30. curvature-of-metric
  36. 31. Einstein-metric
  37. 32. constant-sectional-curvature
  38. 33. simple-symmetric-space
  39. 34. principal-bundle
  40. 35. group
  41. 36. stereographic-projection
  42. 37. Hopf-bundle
  43. field-theory
  44. 38. point-particle-non-relativity
  45. 39. point-particle-relativity
  46. 40. scalar-field
  47. 41. scalar-field-current
  48. 42. scalar-field-non-relativity
  49. 43. projective-lightcone
  50. 44. spacetime-momentum-spinor-representation
  51. 45. Lorentz-group
  52. 46. spinor-field
  53. 47. spinor-field-current
  54. 48. electromagnetic-field
  55. 49. Laplacian-of-tensor-field
  56. 50. Einstein-metric
  57. 51. interaction
  58. 52. harmonic-oscillator-quantization
  59. 53. spinor-field-misc
  60. 54. reference
  61. ไธญๆ–‡
  62. 55. notice
  63. ้€ป่พ‘
  64. 56. ้€ป่พ‘
  65. 57. ้›†ๅˆ่ฎบ
  66. 58. ๆ˜ ๅฐ„
  67. 59. ๅบ
  68. 60. ็ป„ๅˆ
  69. ๅพฎ็งฏๅˆ†
  70. 61. ๅฎžๆ•ฐ
  71. 62. ๆ•ฐๅˆ—ๆž้™
  72. 63. โ„^n
  73. 64. Euclidean ็ฉบ้—ด
  74. 65. Minkowski ็ฉบ้—ด
  75. 66. ๅคš้กนๅผ
  76. 67. ่งฃๆž (Euclidean)
  77. 68. ่งฃๆž (Minkowski)
  78. 69. ่งฃๆž struct ็š„ๆ“ไฝœ
  79. 70. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  80. 71. ไฝ“็งฏ
  81. 72. ็งฏๅˆ†
  82. 73. ๆ•ฃๅบฆ
  83. 74. ็ฝ‘ๆž้™
  84. 75. ๆ‹“ๆ‰‘
  85. 76. ็ดง่‡ด
  86. 77. ่ฟž้€š
  87. 78. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  88. 79. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  89. 80. ่ง’ๅบฆ
  90. ๅ‡ ไฝ•
  91. 81. ๆตๅฝข
  92. 82. ๅบฆ่ง„
  93. 83. ๅบฆ่ง„็š„่”็ปœ
  94. 84. Levi-Civita ๅฏผๆ•ฐ
  95. 85. ๅบฆ่ง„็š„ๆ›ฒ็އ
  96. 86. Einstein ๅบฆ่ง„
  97. 87. ๅธธๆˆช้ขๆ›ฒ็އ
  98. 88. simple-symmetric-space
  99. 89. ไธปไธ›
  100. 90. ็พค
  101. 91. ็ƒๆžๆŠ•ๅฝฑ
  102. 92. Hopf ไธ›
  103. ๅœบ่ฎบ
  104. 93. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  105. 94. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  106. 95. ็บฏ้‡ๅœบ
  107. 96. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  108. 97. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  109. 98. ๅ…‰้”ฅๅฐ„ๅฝฑ
  110. 99. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  111. 100. Lorentz ็พค
  112. 101. ๆ—‹้‡ๅœบ
  113. 102. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  114. 103. ็”ต็ฃๅœบ
  115. 104. ๅผ ้‡ๅœบ็š„ Laplacian
  116. 105. Einstein ๅบฆ่ง„
  117. 106. ็›ธไบ’ไฝœ็”จ
  118. 107. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  119. 108. ๆ—‹้‡ๅœบๆ‚้กน
  120. 109. ๅ‚่€ƒ

note-math

Although integration on manifolds considers not being limited to a specific metric, differential manifolds have still not been singled out.

The situation with fiber bundles is similar; the codomain and its symmetries seem uncertain in the general case.

Example

homogeneous space

frame bundle

principal-bundle-connection

Some intuition can be inspired by the specific symmetry space with the triple as a fiber bundle

Ehresmann connection

The connection on the tangent bundle is considered a generalization of the translation structure. The clue is that, It's said that, the maximum dimension of the diffeomorphism that preserves the tangent bundle connection is the dimension of the affine group. One way to understand connections is the Ehresmann connection, viewed as a vertical-horizontal decomposition of the second-order tangent bundle , where the horizontal part might be a generalization of the "parallel transport" of the tangent space during translation (and thus not just translation alone), in an infinitesimal manner, indicating that when changing infinitesimally, in order for the connection or the associated vector field on to generate a local tangent bundle automorphism of the tangent bundle rather than a general local diffeomorphism of , this decomposition must also be linear with respect to the vertical part, or say that the transformation on the hole fiber space is .

Let be a tangent vector field. Its differential maps to . connection gives a projection to the vertical subbundle , then after the canonical isomorphism from the vertical subbundle to the tangent bundle, we get covariant derivative . A connection is called flat if it satisfies the following equivalent conditions

  • the connection makes the horizontal subbundle integrable
  • the curvature is zero
  • there exists a local coordinate system where , i.e., in this coordinate system, the connection coefficients are zero and the covariant derivative is the coordinate derivative

The concept of a geodesic is weaker than that of a connection; a geodesic depends only on the symmetrical part of a connection.

"The transformation of the entire fiber space under "parallel transport" is " can be generalized to other non-tangent bundle fiber bundles. For example, in gauge theory, there are cases where the transformation of the entire fiber space under parallel transport is . Or consider a Lie group acting/represented on a fiber manifold , then the transformation of the entire fiber space under parallel transport is acting on . All of these can be reduced to principal bundles โ€” acting on the fiber โ€” and their associated bundles. The concept of flat connection also applies