1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

Approximation of Relativistic Scalar Field Action to Non-Relativistic Scalar Field Action

Using a massive field, extracting the rest energy phase exp(โˆ’๐‘š๐‘21โ„๐‘กย i), using time ๐‘ฅ0=๐‘๐‘ก and the speed of light limit lim๐‘โ†’โˆž

for #link(<Klein--Gordon-Lagrangian>)[], restore Planck constant โ„Ž, speed of light ๐‘, time ๐‘ฅ0=๐‘๐‘ก

โˆซโ„๐‘‘๐‘๐‘กโˆซโ„3๐‘‘๐‘ฅ12(1๐‘2(โˆ‚๐‘กฯ•โˆ—โˆ‚๐‘กฯ•)โˆ’โˆ‚๐‘ฅฯ•โˆ—โ‹…โˆ‚๐‘ฅฯ•+๐‘š2๐‘2โ„Ž2ฯ•โˆ—ฯ•)

use ฯ•=exp(โˆ’๐‘š๐‘21โ„๐‘กย i)๐œ“

let ๐œƒ=๐‘š๐‘21โ„ย i

use โˆ‚๐‘กฯ•=๐œƒ๐‘’๐œƒ๐‘ก๐œ“+๐‘’๐œƒ๐‘กโˆ‚๐‘ก๐œ“

โˆ‚๐‘กฯ•โˆ—โˆ‚๐‘กฯ•=โˆ’๐‘š2๐‘4โ„2๐œ“โˆ—๐œ“ย useย ย iย 2=โˆ’1+๐‘š๐‘2โ„ย iย (๐œ“โˆ—โˆ‚๐‘ก๐œ“โˆ’๐œ“โˆ‚๐‘ก๐œ“โˆ—)+โˆ‚๐‘ก๐œ“โˆ—โˆ‚๐‘ก๐œ“

the term โˆ’๐‘š2๐‘4โ„2๐œ“โˆ—๐œ“ multiplied by 1๐‘2 will cancel out the mass term ๐‘š2๐‘2โ„2ฯ•โˆ—ฯ•

the term ๐‘š๐‘2โ„ย iย (๐œ“โˆ—โˆ‚๐‘ก๐œ“โˆ’๐œ“โˆ‚๐‘ก๐œ“โˆ—) multiplied by 1๐‘2 will cancel out the speed of light ๐‘ factor

the term โˆ‚๐‘ก๐œ“โˆ—โˆ‚๐‘ก๐œ“ multiplied by 1๐‘2 will become ๐‘‚(1๐‘2(โˆ‚๐‘ก๐œ“โˆ—โˆ‚๐‘ก๐œ“)), vanishing in the limit lim๐‘โ†’โˆž

๐‘‘๐‘ฅ0=๐‘‘๐‘๐‘ก might not affect it?

Multiply the entire expression by โ„2๐‘š to get

Non-relativistic scalar field Lagrangian, alias Schrodinger-Lagrangian Schrodinger-Lagrangian_(tag)

โˆซโ„๐‘‘๐‘กโˆซโ„3๐‘‘๐‘ฅ12(โ„ย iย (๐œ“โˆ—โˆ‚๐‘ก๐œ“โˆ’๐œ“โˆ‚๐‘ก๐œ“โˆ—)โˆ’โ„2๐‘šโˆ‚๐‘ฅ๐œ“โˆ—โ‹…โˆ‚๐‘ฅ๐œ“)

Can add a gauge field electrostatic potential term to the action, i.e., change โˆ‚๐‘ก to โˆ‚๐‘ก+ย iย โ„๐‘‰

Non-relativistic scalar field equation, alias Schrodinger-equation Schrodinger-equation_(tag)

iย โ„โˆ‚๐‘ก๐œ“=โˆ’โ„22๐‘šโˆ†๐œ“+๐‘‰๐œ“

For either relativistic or non-relativistic scalar fields, it's possible to use a time plane wave mixed static solution exp(โˆ’1โ„๐ธ๐‘กย i)๐œ“(๐‘ฅ) to obtain the eigenvalue equation

โˆ’โ„22๐‘šโˆ†๐œ“+๐‘‰๐œ“=๐ธ๐œ“

One can also add static magnetic potential, โˆ‚๐‘ฅ is changed to (โˆ‚๐‘ฅ+ย iย โ„๐ด)๐œ“, with

(โˆ‚๐‘ฅ+ย iย โ„๐ด)โ€ (โˆ‚๐‘ฅ+ย iย โ„Ž๐ด)๐œ“=(โˆ†+ย iย โ„Žย divย ๐ด+2ย iโ„๐ดโ‹…โˆ‚๐‘ฅโˆ’1โ„2|๐ด|2)๐œ“

Schrodinger-eq-potential-example_(tag) Example

  • ๐‘‰=๐‘˜๐‘Ÿ2

    Resonator (one or more) represents the electric potential of constant charge density in โ„๐‘› or spherical regions. divย ย gradย ๐‘Ÿ2=ย const. Opposite charges correspond to elliptical type, same charges correspond to hyperbolic type.

  • ๐‘‰=๐‘˜1๐‘Ÿ

    โ„3 Hydrogen atom model (single particle, static, zero spin) represents a spherically symmetric electric potential generated by a point charge or a spherically symmetric charge sphere.

    Using symmetry + Gauss's theorem

    Or using differential equations, spherical symmetry ๐‘“(๐‘ฅ)=๐‘“(|๐‘ฅ|)=๐‘“(๐‘Ÿ) + charge concentrated at a point or spherical region, then outside โˆ†๐‘“(๐‘Ÿ)=0 ==> 21๐‘Ÿ๐‘‘๐‘“๐‘‘๐‘Ÿ+๐‘‘2๐‘“๐‘‘๐‘Ÿ2=0 ==> ๐‘“(๐‘Ÿ)=๐‘˜1๐‘Ÿ

    Warning The Schrodinger equation has no analytical solution for atoms and molecules other than hydrogen atoms for the time being. I also don't know the existing multi-particle models and how effective their numerical calculations are.

  • ๐‘‰= box/ball potential well/barrier

  • constant electric field or constant magnetic field

Regarding the non-relativistic approximation limit

  • Static energy phase extraction exp(โˆ’๐‘š๐‘21โ„๐‘กย i) is not a gauge transformation.
  • Can โ„‚ be generalized to โ„,๐•†? Replace i with any Im(๐•‚) unit element. โ„ doesn't work? Or โ„ is used for hyperbolic mass KG rather than elliptical mass KG, in one-dimensional โ„ the equation ๐‘ฅ2=โˆ’1 cannot be solved)
  • This method of non-relativistic approximation limit is coordinate-dependent. On curved manifolds, since multiple coordinates may be needed to cover the entire manifold, the definition problem of the non-relativistic approximation limit will be more difficult.

Symmetry and Conserved Current

let

๐ฟ(๐œ“,โˆ‚๐‘ก๐œ“,โˆ‚๐‘ฅ๐œ“)=12(โ„ย iย (๐œ“โˆ—โˆ‚๐‘ก๐œ“โˆ’๐œ“โˆ‚๐‘ก๐œ“โˆ—)โˆ’โ„2๐‘šโˆ‚๐‘ฅ๐œ“โˆ—โ‹…โˆ‚๐‘ฅ๐œ“)

Similar to the case of relativistic scalar field, energy-momentum tensor energy-momentum-tensor-Schrodinger_(tag)

๐‘‡=๐‘‡๐œˆ๐œ‡={โˆ‚๐ฟโˆ‚(โˆ‚๐œˆ๐œ“)โ‹…โˆ‚๐œˆ๐œ“โˆ’๐ฟย ย ifย ย ๐œ‡=๐œˆโˆ‚๐ฟโˆ‚(โˆ‚๐œ‡๐œ“)โ‹…โˆ‚๐œˆ๐œ“ย ย ifย ย ๐œ‡โ‰ ๐œˆ

Time

โˆ‚๐ฟโˆ‚(โˆ‚๐‘กฯ•)โ‹…โˆ‚๐œˆ๐œ“=12โ„ย iย (๐œ“โˆ—โˆ‚๐œˆ๐œ“โˆ’๐œ“โˆ‚๐œˆ๐œ“โˆ—)=โ„ย iย Im(๐œ“โˆ—โˆ‚๐œˆ๐œ“)

Space

โˆ‚๐ฟโˆ‚(โˆ‚๐‘ฅฯ•)โ‹…โˆ‚๐œˆ๐œ“=โˆ’โ„22๐‘š(โˆ‚๐œˆ๐œ“โˆ—โˆ‚๐‘ฅ๐œ“+โˆ‚๐‘ฅ๐œ“โˆ—โˆ‚๐œˆ๐œ“)=โˆ’โ„22๐‘šRe(โˆ‚๐‘ฅ๐œ“โˆ—โˆ‚๐œˆ๐œ“)

Energy

๐ธ=โˆซโ„3๐‘‘๐‘ฅ(๐‘‡00)=โˆซโ„3๐‘‘๐‘ฅ(โ„22๐‘š|โˆ‚๐‘ฅ๐œ“|2)

Due to the zero divergence of the energy-momentum tensor, energy is conserved with respect to time ๐‘ก, โˆ‚๐‘ก๐ธ=0

For non-relativistic scalar fields, the energy of the Schrodinger field is real, positive and time invariant

Rotational angular momentum is angular-momentum-Schrodinger_(tag)

๐‘€๐‘–๐‘—๐‘˜=[๐‘ฅ๐‘–,๐‘‡๐‘—๐‘˜]

Gauge current of the Schrodinger field

Phase change ๐‘’๐œƒ(๐‘ฅ)ฯ•(๐‘ฅ) and its ฮด change ๐œƒฯ• belong to variations with fixed boundaries near the solution, so

The spatial part of the current is similar to the relativistic case, โ„22๐‘š(๐œ“โˆ—โˆ‚๐‘ฅ๐œ“โˆ’๐œ“โˆ‚๐‘ฅ๐œ“โˆ—)=โ„2๐‘šIm(๐œ“โˆ—โˆ‚๐‘ฅ๐œ“)

The time part of the current (๐œƒ(๐‘ฅ)โˆˆIm(โ„‚))

โ„ย Imย ((โˆ’๐œƒ๐œ“โˆ—)โˆ‚๐‘ก๐œ“+๐œ“โˆ—โˆ‚๐‘ก(๐œƒ๐œ“))=โ„ย Imย (๐œ“โˆ—๐œ“โˆ‚๐‘ก๐œƒ)

The result will be the quantity iย โ„๐œ“โˆ—๐œ“

The entire current, after dividing by iย โ„, is (๐œ“โˆ—๐œ“,โˆ’iย โ„2๐‘š(๐œ“โˆ—โˆ‚๐‘ฅ๐œ“โˆ’๐œ“โˆ‚๐‘ฅ๐œ“โˆ—) current-gauge-Schrodinger_(tag)

The time component of the Schrodinger field gauge current is real, and the spatial component is purely imaginary

Assume ๐‘— is an integrable quantity in โ„3

time-invariant โˆ‚0โˆซโ„3๐‘‘๐‘ฅ(๐‘—0)=0 by โˆ‚โ€ ๐‘‡=0 conserved-spatial-integral-charge-Schrodinger_(tag)

โˆซโ„3๐‘‘๐‘ฅ(๐‘—0)=โˆซโ„3๐‘‘๐‘ฅ(๐œ“โˆ—๐œ“)=โˆซโ„3๐‘‘๐‘ฅ|๐œ“|2

The time component of the Schrodinger field current is positive and its spatial integral is time invariant

Should this quantity be "particle number density" or "probability density" or "electric charge density"?

Warning No one can currently solve atoms other than hydrogen atoms using the Schrodinger equation. What form of many-particle interaction model should be used is also not an obvious matter. No repeatable evidence or downstream applications

motivation-of-quantization_(tag)

Most treatments of quantization assume

  • Linear unitary evolution of โ„‚ field

  • Possibly non-free fields, so plane waves cannot be used

If the non-relativistic approximation limit of the KG field is considered, these assumptions will be automatically obtained.

Then, the time component of the static gauge field acts as the electric potential. Both the harmonic oscillator potential ๐‘˜๐‘Ÿ2 and the hydrogen atom potential ๐‘˜1๐‘Ÿ originate from simple charge densities.

Thus, the motivation problem becomes:

  • Why use โ„‚ KG field?

  • Why and how does it correspond to point particles?

  • Why does the potential of a gauge field become the potential of a particle when the field is quantized into particles?

Classical correspondence refers to the expected value version of the point particle Lagrange-equation (wiki:Ehrenfest_theorem). How to make the expected value version of the point particle Lagrange-equation correspond to the Lagrange-equation of the field?

Schrodinger eq is the non-relativistic limit of โ„‚ KG eq, and Newton's equation is the non-relativistic limit of relativistic point particles. So, can it be proven that KG eq also has a point particle limit? At this point, should the definition of "expectation" use the charge density of Uย (1)'s KG โˆ’ฯ•โˆ—โˆ‚๐‘กฯ•+ฯ•โˆ‚๐‘กฯ•โˆ— (even if it's not a positive definite density)?

Other signs that the Schrodinger wave function corresponds to point particles:

  • A plane wave ๐‘’โˆ’ย iย ๐ธ๐‘ก๐‘’iย ๐‘๐‘ฅ is a solution to the Schrodinger eq <==> ๐ธ=๐‘22๐‘š+๐‘‰(๐‘ฅ). This equality cannot hold for a non-constant ๐‘‰(๐‘ฅ), but it holds in the embedded point particle solution ๐‘ฅ(๐‘ก), because the energy of the point particle ๐ธ=12๐‘š๐‘ฅฬ‡2(๐‘ก)+๐‘‰(๐‘ฅ(๐‘ก)) is constant over time.

  • Feynman path integrals use the path statistics weighted by the point particle Lagrangian to calculate the propagator of the Schrodinger eq.

For harmonic oscillator ๐‘˜๐‘Ÿ2 and hydrogen atom ๐‘˜1๐‘Ÿ, if we assume the phase of the wave function oscillates as ๐‘’โˆ’ย iย ๐ธ๐‘ก and the amplitude is static ๐œ“(๐‘ฅ), then ๐‘’โˆ’ย iย ๐ธ๐‘ก๐œ“(๐‘ฅ) satisfies the Schrodinger or Dirac eq <==> ๐œ“(๐‘ฅ) satisfies the eigenvalue equation Hย ๐œ“=๐ธ๐œ“ for a Hermitian operator, and ๐ธ is discrete, for bound states of elliptic harmonic oscillators and hydrogen atoms.