1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

analytic-struct-product_(tag) Product space

Asymmetry: ๐‘‰โ‰ ๐‘Š ==> No ๐‘‰โŠ™๐‘Š

We have to use (โŠ™๐‘›๐‘‰)โŠ—(โŠ™๐‘š๐‘Š) and partial derivatives

something like

๐‘‘๐‘™๐‘“(๐‘ฅ,๐‘ฆ):๐‘ฃ,๐‘คโ‡โˆ‘๐‘›+๐‘š=๐‘™(๐‘™๐‘›,๐‘š)โˆ‚๐‘›+๐‘š๐‘“โˆ‚๐‘ฃ๐‘›โˆ‚๐‘ค๐‘š(๐‘ฅ,๐‘ฆ)(๐‘ฃ๐‘›โŠ—๐‘ค๐‘š)

mulitplication-analytic_(tag)

  • ๐•‚โ†’๐•‚
(โˆ‘๐‘›โˆˆโ„•๐‘Ž๐‘›๐‘ฃ๐‘›)(โˆ‘๐‘šโˆˆโ„•๐‘๐‘š๐‘ฃ๐‘š)=โˆ‘๐‘™โˆˆโ„•๐‘๐‘™๐‘ฃ๐‘™

with ๐‘๐‘™=โˆ‘๐‘›+๐‘š=๐‘™๐‘Ž๐‘›๐‘๐‘š

The radius of convergence is at least min(๐‘…๐ด,๐‘…๐ต)

(Related to Cauchy product. Try to find a better proof method)

๐‘1=๐‘Ž1๐‘0+๐‘Ž0๐‘1

Restore 1๐‘›! in differentiation, โˆ‘๐‘Ž๐‘›๐‘ฃ๐‘›โˆผโˆ‘1๐‘›!๐‘‘๐‘›๐‘“(๐‘ฅ)(๐‘ฃ๐‘›)

==> Leibniz-law-1d_(tag)

๐‘‘(๐‘“๐‘”)(๐‘ฅ)(๐‘ฃ)=(๐‘‘๐‘“(๐‘ฅ)(๐‘ฃ))๐‘”(๐‘ฅ)+๐‘“(๐‘ฅ)(๐‘‘๐‘”(๐‘ฅ)(๐‘ฃ)), or

โˆ‚(๐‘“๐‘”)โˆ‚๐‘ฃ=โˆ‚๐‘“โˆ‚๐‘ฃ๐‘”+๐‘“โˆ‚๐‘”โˆ‚๐‘ฃ, or

(๐‘“๐‘”)โ€ฒ=๐‘“โ€ฒ๐‘”+๐‘“๐‘”โ€ฒ

  • ๐•‚๐‘‘โ†’๐•‚
(โˆ‘๐‘›โˆˆโ„•๐‘Ž๐‘›๐‘ฃ๐‘›)(โˆ‘๐‘šโˆˆโ„•๐‘๐‘š๐‘ฃ๐‘š)=โˆ‘๐‘™โˆˆโ„•๐‘๐‘™๐‘ฃ๐‘™

Collect the ๐‘›+๐‘š tensor ๐ด๐‘›(๐‘ฃ1โ‹ฏ๐‘ฃ๐‘›)๐ต๐‘š(๐‘ฃ๐‘›+1โ‹ฏ๐‘ฃ๐‘›+๐‘š)

let โˆ€๐‘–,๐‘ฃ๐‘–=๐‘ฃ to get the ๐‘›+๐‘š polynomial ๐ด๐‘›(๐‘ฃ๐‘›)๐ต๐‘š(๐‘ฃ๐‘š)

==> ๐ถ๐‘™(๐‘ฃ๐‘™)=โˆ‘๐‘›+๐‘š=๐‘™๐ด๐‘›(๐‘ฃ๐‘›)๐ต๐‘š(๐‘ฃ๐‘š)

๐ถ1๐‘ฃ=๐ด1(๐‘ฃ)๐ต0+๐ด0๐ต1(๐‘ฃ)

==> Leibniz-law_(tag) โˆ‚(๐‘“๐‘”)โˆ‚๐‘ฃ=โˆ‚๐‘“โˆ‚๐‘ฃ๐‘”+๐‘“โˆ‚๐‘”โˆ‚๐‘ฃ

mulitplication-inverse-analytic_(tag)

let ๐‘“:๐•‚๐‘‘โ†’๐•‚, ๐‘“=โˆ‘๐ด๐‘›(๐‘ฃ๐‘›), ๐ด0โ‰ 0

use ๐‘“=1โˆ’๐‘” and 11โˆ’๐‘”=1+๐‘”+๐‘”2+โ‹ฏ

or calculate directly

let 1๐‘“=โˆ‘๐ต๐‘š๐‘ฃ๐‘š, 1๐‘“โ‹…๐‘“=1, use multiplication

๐‘š=0: 1=๐ด0๐ต0

๐‘šโ‰ฅ1: 0=๐ถ๐‘™=โˆ‘๐‘›+๐‘š=๐‘™๐ด๐‘›๐ต๐‘š

==> ๐ต๐‘š=โˆ’1๐ด0โˆ‘๐‘›=1๐‘š๐ด๐‘›๐ต๐‘šโˆ’๐‘›, use induction ๐ต0,โ€ฆ,๐ต๐‘šโˆ’1

differential-of-multiplication-inverse_(tag) use Leibniz law

0=โˆ‚๐‘ฃ(1๐‘“โ‹…๐‘“)=โˆ‚๐‘ฃ(1๐‘“)๐‘“+1๐‘“โˆ‚๐‘ฃ๐‘“โŸนโˆ‚๐‘ฃ(1๐‘“)=โˆ’1๐‘“2โˆ‚๐‘ฃ๐‘“, or

(1๐‘“)โ€ฒ=โˆ’๐‘“โ€ฒ๐‘“2

in particular, (1๐‘ฅ)โ€ฒ=โˆ’1๐‘ฅ2

radius of convergence

try inductive proof |๐ต๐‘š|โ‰ค๐‘…๐‘š

|๐ด0||๐ต๐‘š|โ‰คโˆ‘๐‘›=1๐‘š|๐ด๐‘›||๐ต๐‘šโˆ’๐‘›|โ‰คโˆ‘๐‘›=1๐‘š|๐ด๐‘›|๐‘…๐‘šโˆ’๐‘›(byย inductionย ๐ต1,โ€ฆ,๐ต๐‘šโˆ’1)=๐‘…๐‘šโˆ‘๐‘›=1๐‘š|๐ด๐‘›|(1๐‘…)๐‘›โ‰ค๐‘…๐‘šโˆ‘๐‘›=1โˆž|๐ด๐‘›|(1๐‘…)๐‘›

To complete induction, use ๐‘… with 1|๐ด0|โˆ‘๐‘›=1โˆž|๐ด๐‘›|(1๐‘…)๐‘›โ‰ค1

compose-op-analytic_(tag)

  • ๐•‚โ†’๐•‚

let ๐‘“(๐‘ฆ+๐‘ค)=โˆ‘๐‘Ž๐‘›๐‘ฃ๐‘›, ๐‘”(๐‘ฅ+๐‘ฃ)=โˆ‘๐‘๐‘š๐‘ค๐‘š

with ๐‘Ž0=๐‘“(๐‘ฆ)=๐‘“(๐‘”(๐‘ฅ))=๐‘“(๐‘0)

๐‘“(๐‘”(๐‘ฅ+๐‘ฃ))โˆ˜=๐‘“(๐‘0+โˆ‘๐‘š=1โˆž๐‘๐‘š๐‘ฃ๐‘š)=๐‘Ž0+โˆ‘๐‘›=1โˆž๐‘Ž๐‘›(โˆ‘๐‘š=1โˆž๐‘๐‘š๐‘ฃ๐‘š)๐‘›=๐‘0+โˆ‘๐‘™=1โˆž๐‘๐‘™๐‘ฃ๐‘™

where all possible sources of the compounded ๐‘ฃ๐‘™

๐‘ฃ๐‘™=(๐‘ฃ1)๐‘–1โ‹ฏ(๐‘ฃ๐‘™)๐‘–๐‘™=๐‘ฃ1โ‹…๐‘–1+โ‹ฏ+๐‘™โ‹…๐‘–๐‘™ with ๐‘™=1โ‹…๐‘–1+โ‹ฏ+๐‘™โ‹…๐‘–๐‘™

thus can only come from for ๐‘˜=1,โ€ฆ,๐‘™

(๐‘1๐‘ฃ+โ‹ฏ+๐‘๐‘™๐‘ฃ๐‘™)๐‘˜=โˆ‘๐‘–1+โ‹ฏ+๐‘–๐‘™=๐‘˜(๐‘˜๐‘–1,โ€ฆ,๐‘–๐‘™)๐‘1๐‘–1โ‹ฏ๐‘๐‘™๐‘–๐‘™ (cf. #link(<multi-combination>)[])

==>

๐‘๐‘™๐‘ฃ๐‘™=โˆ‘๐‘˜=1,โ€ฆ,๐‘™โˆ‘๐‘–1,โ€ฆ,๐‘–๐‘™โˆˆโ„•๐‘–1+โ‹ฏ+๐‘–๐‘™=๐‘˜1โ‹…๐‘–1+โ‹ฏ+๐‘™โ‹…๐‘–๐‘™=๐‘™(๐‘˜๐‘–1,โ€ฆ,๐‘–๐‘™)๐‘Ž๐‘˜๐‘1๐‘–1โ‹ฏ๐‘๐‘™๐‘–๐‘™๐‘ฃ1โ‹…๐‘–1+โ‹ฏ+๐‘™โ‹…๐‘–๐‘™

๐‘1=๐‘Ž1๐‘1. Written as a differential chain-rule-1d_(tag)

๐‘‘(๐‘“โˆ˜๐‘”)(๐‘ฅ)(๐‘ฃ)=๐‘‘๐‘“(๐‘”(๐‘ฅ))(๐‘‘๐‘”(๐‘ฅ)(๐‘ฃ)), or

(๐‘“โˆ˜๐‘”)โ€ฒ(๐‘ฅ)=๐‘“โ€ฒ(๐‘”(๐‘ฅ))๐‘”โ€ฒ(๐‘ฅ)

  • ๐•‚๐‘‘โ†’๐•‚๐‘‘โ€ฒ
๐ถ๐‘™(๐‘ฃ๐‘™)=โˆ‘๐‘˜=1,โ€ฆ,๐‘™โˆ‘๐‘–1,โ€ฆ,๐‘–๐‘™โˆˆโ„•๐‘–1+โ‹ฏ+๐‘–๐‘™=๐‘˜1โ‹…๐‘–1+โ‹ฏ+๐‘™โ‹…๐‘–๐‘™=๐‘™(๐‘˜๐‘–1,โ€ฆ,๐‘–๐‘™)๐ด๐‘˜(๐ต1๐‘–1โ‹ฏ๐ต๐‘™๐‘–๐‘™(๐‘ฃ1โ‹…๐‘–1+โ‹ฏ+๐‘™โ‹…๐‘–๐‘™))

where ๐ต1๐‘–1โ‹ฏ๐ต๐‘™๐‘–๐‘™(๐‘ฃ1โ‹…๐‘–1+โ‹ฏ+๐‘™โ‹…๐‘–๐‘™)=(๐ต1(๐‘ฃโŠ™1))โŠ™๐‘–1โŠ™โ‹ฏโŠ™(๐ต๐‘™(๐‘ฃโŠ™๐‘™))โŠ™๐‘–๐‘™

๐ถ1(๐‘ฃ)=๐ด1(๐ต1(๐‘ฃ)), written as a differential is chain-rule_(tag)

๐‘‘(๐‘“โˆ˜๐‘”)(๐‘ฅ)(๐‘ฃ)=๐‘‘๐‘“(๐‘”(๐‘ฅ))(๐‘‘๐‘”(๐‘ฅ)(๐‘ฃ))

Generally written as the differential form

  • ๐ถ๐‘™โˆผ1๐‘™!๐‘‘๐‘™(๐‘“โˆ˜๐‘”)

  • ๐ด๐‘˜โˆผ1๐‘˜!๐‘‘๐‘˜๐‘“

  • ๐ต๐‘—โˆผ1๐‘—!๐‘‘๐‘—๐‘”

in ๐‘‘๐‘™(๐‘“โˆ˜๐‘”)(๐‘ฅ)(๐‘ฃ๐‘™)=ย formulaย ofย ๐‘‘๐‘˜๐‘“,๐‘‘๐‘—๐‘”

Extract ๐‘™!,1๐‘˜!,(1๐‘—!)๐‘–๐‘—

Place in (๐‘˜๐‘–1,โ€ฆ,๐‘–๐‘™)=๐‘˜!๐‘–1!โ‹ฏ๐‘–๐‘™!

Get ๐‘™!(1!)๐‘–1โ‹…๐‘–1!โ‹ฏ(๐‘™!)๐‘–๐‘™โ‹…๐‘–๐‘™! (this is not ๐‘™!(1โ‹…๐‘–1)!โ‹ฏ(๐‘™โ‹…๐‘–๐‘™)!=(๐‘™1โ‹…๐‘–1,โ€ฆ,๐‘™โ‹…๐‘–๐‘™))

๐‘‘๐‘™(๐‘“โˆ˜๐‘”)=โˆ‘๐‘˜=1,โ€ฆ,๐‘™โˆ‘๐‘–1,โ€ฆ,๐‘–๐‘™โˆˆโ„•๐‘–1+โ‹ฏ+๐‘–๐‘™=๐‘˜1โ‹…๐‘–1+โ‹ฏ+๐‘™โ‹…๐‘–๐‘™=๐‘™๐‘™!(1!)๐‘–1โ‹…๐‘–1!โ‹ฏ(๐‘™!)๐‘–๐‘™โ‹…๐‘–๐‘™!๐‘‘๐‘˜๐‘“(๐‘‘1๐‘”)๐‘–1โ‹ฏ(๐‘‘๐‘™๐‘”)๐‘–๐‘™

inverse-analytic_(tag)

let ๐‘“โˆผโˆ‘๐ด๐‘›(๐‘ฃ๐‘›), ๐•‚๐‘‘โ†’๐•‚๐‘‘, ๐ด1โˆˆGL(๐‘‘,๐•‚)

let ๐‘“โˆ’1(๐‘ฆ+๐‘ฃ)=โˆ‘๐ต๐‘š(๐‘ฃ๐‘š)

  • First-order differential calculation. ๐‘“โˆ˜๐‘“โˆ’1=๐‘“โˆ’1โˆ˜๐‘“=๐Ÿ™:๐‘ฃโ‡๐‘ฃ, use composite

๐Ÿ™(๐‘ฃ)=โˆ‘๐ถ๐‘™(๐‘ฃ๐‘™)

๐ถ0=0๐ถ1=๐Ÿ™๐ถ๐‘™=0,โˆ€๐‘™โ‰ฅ2

๐Ÿ™(๐‘ฃ)=๐ถ1(๐‘ฃ)=๐ด1(๐ต1(๐‘ฃ))โŸน๐ต1=๐ด1โˆ’1 by ๐ด1โˆˆGL(๐‘‘,๐•‚)

  • Higher-order differential calculation. use induction for ๐ต1,โ€ฆ,๐ต๐‘™โˆ’1

๐ต๐‘™ only comes from

๐‘–1=โ‹ฏ=๐‘–๐‘™โˆ’1=0 and ๐‘–๐‘™=1 ==> 1โ‹…๐‘–1+โ‹ฏ+๐‘™โ‹…๐‘–๐‘™=๐‘™

๐‘–1+โ‹ฏ+๐‘–๐‘™=1

(๐‘™0,โ€ฆ,๐‘™)=1

==> (omitting (๐‘ฃ๐‘™))

0=๐ถ๐‘™=๐ด1๐ต๐‘™+โˆ‘๐‘˜=2,โ€ฆ,๐‘™โˆ‘๐‘–1,โ€ฆ,๐‘–๐‘™โˆˆโ„•๐‘–1+โ‹ฏ+๐‘–๐‘™=๐‘˜1โ‹…๐‘–1+โ‹ฏ+๐‘™โ‹…๐‘–๐‘™=๐‘™(๐‘˜๐‘–1,โ€ฆ,๐‘–๐‘™)๐ด๐‘˜๐ต1๐‘–1โ‹ฏ๐ต๐‘™โˆ’1๐‘–๐‘™โˆ’1

๐ด1โˆˆย GL ==>

๐ต๐‘™=โˆ’๐ด1โˆ’1โˆ‘๐‘˜=2,โ€ฆ,๐‘™โˆ‘๐‘–1,โ€ฆ,๐‘–๐‘™โˆˆโ„•๐‘–1+โ‹ฏ+๐‘–๐‘™=๐‘˜1โ‹…๐‘–1+โ‹ฏ+๐‘™โ‹…๐‘–๐‘™=๐‘™(๐‘˜๐‘–1,โ€ฆ,๐‘–๐‘™)๐ด๐‘˜๐ต1๐‘–1โ‹ฏ๐ต๐‘™โˆ’1๐‘–๐‘™โˆ’1

Because it may not converge, ๐‘“โˆผโˆ‘๐‘›โ‰ฅ1๐ด๐‘›(๐‘ฃ๐‘›) cannot be directly used as a ๐•‚๐‘‘โ†’๐•‚๐‘‘ function

But it can be extended to ๐‘“:โจ๐‘›=1โˆžLin(โŠ™๐‘›๐•‚๐‘‘โ†’๐•‚๐‘‘โ€ฒ)โ†’ย self

such that ๐‘“โˆ˜๐‘“โˆ’1=๐‘“โˆ’1โˆ˜๐‘“=๐Ÿ™ย ofย โจ๐‘›=1โˆžLin(โŠ™๐‘›๐•‚๐‘‘โ†’๐•‚๐‘‘โ€ฒ)

  • The radius of convergence of the inverse function is non-zero (p.77 of ref-4)
๐ต๐‘™=โˆ’๐ด1โˆ’1โˆ‘๐‘˜=2,โ€ฆ,๐‘™โˆ‘๐‘–1,โ€ฆ,๐‘–๐‘™โˆˆโ„•๐‘–1+โ‹ฏ+๐‘–๐‘™=๐‘˜1โ‹…๐‘–1+โ‹ฏ+๐‘™โ‹…๐‘–๐‘™=๐‘™(๐‘˜๐‘–1,โ€ฆ,๐‘–๐‘™)๐ด๐‘˜๐ต1๐‘–1โ‹ฏ๐ต๐‘™โˆ’1๐‘–๐‘™โˆ’1

==>

|๐ต๐‘™|โ‰ค1|๐ด1|โˆ‘๐‘˜=2,โ€ฆ,๐‘™โˆ‘๐‘–1,โ€ฆ,๐‘–๐‘™โˆˆโ„•๐‘–1+โ‹ฏ+๐‘–๐‘™=๐‘˜1โ‹…๐‘–1+โ‹ฏ+๐‘™โ‹…๐‘–๐‘™=๐‘™(๐‘˜๐‘–1,โ€ฆ,๐‘–๐‘™)|๐ด๐‘˜||๐ต1|๐‘–1โ‹ฏ|๐ต๐‘™โˆ’1|๐‘–๐‘™โˆ’1

use (๐‘˜๐‘–1,โ€ฆ,๐‘–๐‘™)โˆˆโ„โ‰ฅ0 (indeed โˆˆโ„•)

Construct a power series control with a non-zero radius of convergence for (almost) โ„โ‰ฅ0 such that |๐ด๐‘˜|โ‰ค๐‘Ž๐‘˜,|๐ต๐‘˜|โ‰ค๐‘๐‘˜

if by induction, for ๐ด2,โ€ฆ,๐ด๐‘™, ๐ต1,โ€ฆ,๐ต๐‘™โˆ’1, |๐ด๐‘˜|โ‰ค๐‘Ž๐‘˜, |๐ต๐‘—|โ‰ค๐‘๐‘—

where โˆ‘๐‘˜โ‰ฅ1๐‘Ž๐‘˜๐‘ฃ๐‘˜ with ๐‘˜โ‰ฅ2โŸน๐‘Ž๐‘˜โˆˆโ„โ‰ฅ0

Its inverse is โˆ‘๐‘—โ‰ฅ1๐‘๐‘—๐‘ฃ๐‘— with ๐‘—โ‰ฅ1โŸน๐‘๐‘—โˆˆโ„โ‰ฅ0. โ„โ‰ฅ0 to prove. radius of convergence is non-zero to prove

use case of ๐•‚โ†’๐•‚

๐‘๐‘™=โˆ’1๐‘Ž1โˆ‘๐‘˜=2,โ€ฆ,๐‘™โˆ‘๐‘–1,โ€ฆ,๐‘–๐‘™โˆˆโ„•๐‘–1+โ‹ฏ+๐‘–๐‘™=๐‘˜1โ‹…๐‘–1+โ‹ฏ+๐‘™โ‹…๐‘–๐‘™=๐‘™(๐‘˜๐‘–1,โ€ฆ,๐‘–๐‘™)๐‘Ž๐‘˜๐‘1๐‘–1โ‹ฏ๐‘๐‘™โˆ’1๐‘–๐‘™โˆ’1

to get ๐‘๐‘—โ‰ฅ0, use ๐‘Ž1<0

==>

|๐ต๐‘™|โ‰ค1|๐ด1|โˆ‘๐‘˜=2,โ€ฆ,๐‘™โˆ‘๐‘–1,โ€ฆ,๐‘–๐‘™โˆˆโ„•๐‘–1+โ‹ฏ+๐‘–๐‘™=๐‘˜1โ‹…๐‘–1+โ‹ฏ+๐‘™โ‹…๐‘–๐‘™=๐‘™(๐‘˜๐‘–1,โ€ฆ,๐‘–๐‘™)|๐ด๐‘˜||๐ต1|๐‘–1โ‹ฏ|๐ต๐‘™โˆ’1|๐‘–๐‘™โˆ’1โ‰คโˆ’๐‘Ž1|๐ด1|๐‘๐‘™

|๐ต1|=1|๐ด1|, ๐‘1=1โˆ’๐‘Ž1

to get |๐ต๐‘™|โ‰ค๐‘๐‘™, |๐ต1|โ‰ค๐‘1, use ๐‘Ž1=โˆ’|๐ด1|โ‰•๐›ผ

to get ๐‘˜โ‰ฅ2โŸน|๐ด๐‘˜|โ‰ค๐‘Ž๐‘˜, use ๐‘Ž๐‘˜=(sup๐‘˜โ‰ฅ2{|๐ด๐‘˜|1๐‘˜})๐‘˜โ‰•๐›ฝ๐‘˜

now prove the inverse power series ๐‘๐‘˜ of the power series ๐‘Ž๐‘˜ has a non-zero radius of convergence

โˆ‘๐‘›โ‰ฅ1๐‘Ž๐‘˜๐‘ฃ๐‘˜=๐›ผ๐‘ฃ+โˆ‘๐‘›โ‰ฅ2๐›ฝ๐‘˜๐‘ฃ๐‘˜โˆผ๐›ผ๐‘ฃ+11โˆ’๐›ฝ๐‘ฃโˆ’1โˆ’๐›ฝ๐‘ฃ=๐›ผ๐‘ฃ+(๐›ฝ๐‘ฃ)21โˆ’๐›ฝ๐‘ฃ

let ๐‘“(๐‘ฃ)=๐›ผ๐‘ฃ+(๐›ฝ๐‘ฃ)21โˆ’๐›ฝ๐‘ฃโˆผโˆ‘๐‘Ž๐‘˜๐‘ฃ๐‘˜, ๐‘“โˆ’1(๐‘ฃ)=๐‘”(๐‘ฃ)โˆผโˆ‘๐‘๐‘—๐‘ฃ๐‘—

In order to find the inverse mapping ๐‘“โˆ’1=๐‘” of ๐‘“, solve the equation ๐›ผ๐‘”(๐‘ฃ)+(๐›ฝ๐‘”(๐‘ฃ))21โˆ’๐›ฝ๐‘”(๐‘ฃ)=๐‘ฃ

==> Quadratic equation of ๐‘”(๐‘ฃ), there are two roots

use ๐‘“(0)=0โŸน๐‘”(0)=0, select the correct root

๐‘”(๐‘ฃ)=โˆ’(๐›ผ+๐›ฝ๐‘ฃ)โˆ’((๐›ผ+๐›ฝ๐‘ฃ)2+4๐›ฝ(๐›ฝโˆ’๐›ผ)๐‘ฃ)122๐›ฝ(๐›ฝโˆ’๐›ผ)

use (1+๐‘ค)12โˆผโˆ‘๐‘›โˆˆโ„•(12๐‘›)๐‘ค๐‘› radius of convergence 1 ==> ๐‘”(๐‘ฃ)โˆผโˆ‘๐‘๐‘—๐‘ฃ๐‘— non-zero radius of convergence

use |๐ต๐‘™|โ‰ค๐‘๐‘™ ==> โˆ‘๐ต๐‘—๐‘ฃ๐‘— non-zero radius of convergence

Although the exact radius of convergence cannot be given here, the method of proving the inverse function by the compression fixed point principle cannot give the exact maximal local reversible region for the pure differential method.

differential-of-inverse_(tag)

๐Ÿ™ย ofย ย powerย seriesย spaceย =๐‘“โˆ˜๐‘“โˆ’1โŸน๐Ÿ™ย ofย ย GLย =๐‘‘๐‘“(๐‘“โˆ’1(๐‘ฅ))๐‘‘๐‘“โˆ’1(๐‘ฅ)โŸน๐‘‘๐‘“โˆ’1(๐‘ฅ)=(๐‘‘๐‘“(๐‘“โˆ’1(๐‘ฅ)))โˆ’1

or (๐‘“โˆ’1)โ€ฒ(๐‘ฅ)=1๐‘“โ€ฒ(๐‘“โˆ’1(๐‘ฅ))

implicit-function_(tag)

use #link(<analytic-struct-product>)[]

๐น(๐‘ฅ,๐‘ฆ)=0 and โˆ‚๐นโˆ‚๐‘ฆ(๐‘ฅ,๐‘ฆ)โˆˆย GL

==> ๐น(๐‘ฅ,๐‘“(๐‘ฅ))=0, ๐‘‘๐‘“(๐‘ฅ)=โˆ’(โˆ‚๐นโˆ‚๐‘ฆ)โˆ’1โˆ‚๐นโˆ‚๐‘ฅ(๐‘ฅ,๐‘“(๐‘ฅ))

The calculation of differentials and differential functions does not require series in advance

  • ๐ถโˆž function with zero radius of convergence at finite points

    expย 11โˆ’๐‘ฅ2 connected to 0

  • Function that is ๐ถโˆž everywhere but has a radius of convergence of 0 everywhere

wiki: Non-analytic_smooth_function

๐น(๐‘ฅ)โ‰”โˆ‘๐‘˜โˆˆโ„•๐‘’โˆ’2๐‘˜cos(2๐‘˜๐‘ฅ)

Since the series โˆ‘๐‘˜โˆˆโ„•๐‘’โˆ’2๐‘˜(2๐‘˜)๐‘› converges for forall ๐‘›โˆˆโ„•, this function is easily seen to be of class ๐ถโˆž, by a standard inductive application of the Weierstrass M-test to demonstrate uniform convergence of each series of derivatives.

We now show that ๐น(๐‘ฅ) is not analytic at any dyadic rational multiple of ๐œ‹, that is, at any ๐‘ฅโ‰”๐œ‹โ‹…๐‘โ‹…2โˆ’๐‘ž with ๐‘โˆˆโ„ค and ๐‘žโˆˆโ„•.

Since the sum of the first q terms is analytic, we need only consider ๐น>๐‘ž(๐‘ฅ), the sum of the terms with ๐‘˜>๐‘ž.

For forall orders of derivation ๐‘›=2๐‘š with ๐‘šโˆˆ๐‘, ๐‘šโ‰ฅ2 and ๐‘š>๐‘ž2 we have

๐น>๐‘ž(๐‘›)โ‰”โˆ‘๐‘˜โˆˆโ„•๐‘˜>๐‘ž๐‘’โˆ’2๐‘˜(2๐‘˜)๐‘›cos(2๐‘˜๐‘ฅ)=โˆ‘๐‘˜โˆˆโ„•๐‘˜>๐‘ž๐‘’โˆ’2๐‘˜(2๐‘˜)๐‘›โ‰ฅ๐‘’โˆ’๐‘›๐‘›2๐‘›(asย ๐‘›โ†’โˆž)

where we used the fact that cos(2๐‘˜๐‘ฅ)=1 for forall 2๐‘˜>2๐‘ž, and we bounded the first sum from below by the term with 2๐‘˜=22๐‘š=๐‘›2.

As a consequence, at any such ๐‘ฅโˆˆโ„,

limโ€‰sup๐‘›โ†’โˆž(|๐น>๐‘ž(๐‘›)|๐‘›!)1๐‘›=โˆž

Since the set of analyticity of a function is an open set, and since dyadic rationals are dense, we conclude that ๐น>๐‘ž, and hence ๐น, is nowhere analytic in โ„

  • Continuous but nowhere differentiable

wiki: Weierstrass_function

๐‘“(๐‘ฅ)=โˆ‘๐‘›=0โˆž๐‘Ž๐‘›cos(๐‘๐‘›๐œ‹๐‘ฅ)

where 0<๐‘Ž<1, ๐‘ is positive odd integer, and ๐‘Ž๐‘>1+32๐œ‹

  • ๐‘˜-th order differentiable but not ๐‘˜+1-th order differentiable: use the integrals of each order of the Weierstrass function

  • ๐‘˜-th order differentiable but ๐‘˜-th order not continuously differentiable (although ๐‘˜-th order differentiable implies ๐‘˜โˆ’1-th order continuously differentiable): use ๐‘ฅ2ย sinย 1๐‘ฅ, 1-th order differentiable but not 1-th order continuously differentiable, use its integrals of each order

  • Continuous homeomorphism but not differentiable homeomorphism or analytic homeomorphism. ๐‘ฅ3

  • Diffeomorphism but not analytic diffeomorphism. Take the part of the smooth but everywhere non-analytic function where ๐‘‘๐‘“โ‰ 0 to get a local diffeomorphism. Local to global by using ๐‘ฅ1โˆ’๐‘ฅ to get an analytic diffeomorphism from (โˆ’1,1)โ†’โ„