1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

orientation-of-real-linear-space_(tag) โ„๐‘› direction

๐ดโˆˆGL(๐‘›,โ„),ย detย ๐ดโ‰ 0

โ„โˆ–0=โ„<0โŠ”โ„>0

GL(๐‘›,โ„)=ย detโˆ’1(โ„<0)โŠ”ย detโˆ’1(โ„>0)

There are two directions. for vector base of โ„๐‘›, change order once ๐‘’๐‘–โ†”๐‘’๐‘— change orientable, introduce a โˆ’1 factor. This is somewhat similar to alternating-tensor. orientation defined as quotient of vector base with same orientation. equivalent to decompose of GL(๐‘›,โ„) detโˆ’1(โ„<0)โŠ”ย detโˆ’1(โ„>0)

orientation-of-boundary-of-simplex_(tag)

simplx oriented boundary. The direction of the boundary {๐‘ฅ0,โ€ฆ,๐‘ฅ๐‘›} of simplex {๐‘ฅ0,โ€ฆ,๐‘ฅ๐‘›โˆ–๐‘ฅ๐‘–} is to define the direction for the ๐‘›โˆ’1 affine subspace where the boundary is located, such that the interior ๐ด is in the ๐‘›-dimensional positive direction and the exterior ๐ดโˆ is in the ๐‘›-dimensional negative direction

If we continue to define the direction for the boundary of the boundary, we will find that adjacent directions cancel out

simplex vertices can construct a directed basis of โ„๐‘› according to ๐‘ฅ0โ†’๐‘ฅ1โ†’โ‹ฏโ†’๐‘ฅ๐‘›. Permutations make the directions differ by sign(๐œ‡)

After selecting ๐‘ฅ0,โ€ฆ,๐‘ฅ๐‘› to be the positive direction of โ„๐‘›, the direction of the boundary is (โˆ’1)๐‘–โˆ’1๐‘ฅ0,โ€ฆ,๐‘ฅ๐‘›โˆ–๐‘ฅ๐‘–

similar to box

Example Tetrahedron, right-hand rule, with the thumb pointing towards the inside of the tetrahedron to get the boundary direction (the index of the vertices in the picture starts from 1 instead of 0)

orientable-low-dim-polyhera_(tag) Polyhedron #link(<orientation-of-boundary-of-simplex>)[Orientable] is defined as: when constructing a polyhedron with simplexes, it is possible to define compatible orientations for all ๐‘˜ simplexes, such that the adjacent two ๐‘˜ simplexes ๐ด,๐ต have compatible orientations on their ๐‘˜โˆ’1 intersecting boundary simplexes, i.e., the orientation ๐‘‚ corresponds to the interior of simplex ๐ด and the exterior of simplex ๐ต. The orientation โˆ’๐‘‚ corresponds to the interior of simplex ๐ต and the exterior of simplex ๐ด. i.e., simplex partition has well-defined interior and exterior.

Mobius-strip_(tag) Example Non-orientable Mobius-type polyhedron (image modified from wiki)

No matter how the direction of each ๐‘˜ simplex is defined, there exists a pair of adjacent ๐‘˜ simplex ๐ด,๐ต whose ๐‘˜โˆ’1 connected boundary simplex directions are incompatible. i.e. Simplex partitioning has no well-defined inside and outside

Starting from the initial ๐‘˜ simplex, continuously and transitively defining compatible directions for adjacent ๐‘˜ simplexes, going around in a circle will lead to incompatible directions of the connected boundary simplex. Direction ๐‘‚ corresponds to the inside of ๐ด,๐ต, direction โˆ’๐‘‚ corresponds to the outside of ๐ด,๐ต

simplex-chain_(tag) simplex chain

boundary-operator_(tag)

Boundary operator โˆ‚

boundary ๐‘๐‘˜=โˆ‚๐‘˜+1๐‘๐‘˜+1

Example

  • boundary-op-not-injective

  • tri-intersect-boundary_(tag)

cycle โˆ‚๐‘=0

โˆ‚2=0 or โˆ‚๐‘˜โˆ‚๐‘˜+1=0

imย โˆ‚โŠ‚ย kerย โˆ‚ or imย โˆ‚๐‘˜+1โŠ‚ย kerย โˆ‚๐‘˜

simplex-homology_(tag)

k-th homology ๐ป๐‘˜(โ„๐‘›)=kerย โˆ‚๐‘˜imย โˆ‚๐‘˜+1

where kerย โˆ‚๐‘˜,ย imย โˆ‚๐‘˜+1 are in ๐‘˜ chain space

Due to geometric meaning, only โ„ค coefficients are needed

real-linear-space-trivial-homology_(tag)

โ„๐‘› is trivial homology โˆ€๐‘˜=1,โ€ฆ,๐‘›,๐ป๐‘˜(โ„๐‘›)=0 or kerย โˆ‚๐‘˜=ย imย โˆ‚๐‘˜+1 or in โ„๐‘›, the boundary of ๐‘ is zero <==> ๐‘ is a boundary

Try to prove it by purely affine orientation & combinatorics technique, avoid Euclidean topology

existence-and-uniqueness-of-n-simplex-chain-with-boundary_(tag)

in โ„๐‘›, uniqueness ๐‘› chain of ๐‘›โˆ’1 boundary

๐ป๐‘›=0โŸนย kerย โˆ‚๐‘›=ย imย โˆ‚๐‘›+1=0

so existence of boundary of nonzero ๐‘› chain

โˆ€๐‘โˆˆ๐ถ๐‘›,โˆ‚๐‘=0โŸน๐‘โˆˆย kerย โˆ‚๐‘›=0โŸน๐‘=0

and uniqueness of ๐‘› dim region surround by codimย =1 boundary

(๐‘,๐‘โ€ฒโˆˆ๐ถ๐‘›)โˆง(โˆ‚๐‘›๐‘=โˆ‚๐‘›๐‘โ€ฒ)โŸนโˆ‚๐‘›(๐‘โˆ’๐‘โ€ฒ)=0โŸน๐‘โˆ’๐‘โ€ฒโˆˆย kerย โˆ‚๐‘›=0โŸน๐‘=๐‘โ€ฒ

homology-hole_(tag) For a set โ„๐‘› minus a finite number or a countable number of separated linear subspaces or polyhedra, homology is not zero

Stokes-theorem_(tag)

Similar to the one-dimensional #link(<fundamental-theorem-of-calculus>)[Fundamental Theorem of Calculus]

Define exterior-differential_(tag) ๐‘‘๐œ”(๐‘ฅ)=ย limย ๐œŽโ†’๐‘ฅโˆซโˆ‚๐œŽ๐œ”Vol(๐œŽ)ย Vol in coordinates, where Vol is the volume of the coordinates, ๐œŽ is a large class of regions, and the calculation result does not depend on the choice of coordinates.

Then there is Stokes-theorem

for #link(<orientable>)[orientable] almost everywhere analytic manifold with boundary, โˆซโˆ‚๐‘€๐œ”=โˆซ๐‘€๐‘‘๐œ” or โŸจโˆ‚๐‘€,๐œ”โŸฉ=โŸจ๐‘€,๐‘‘๐œ”โŸฉ

Calculate ๐‘‘๐œ”(๐‘ฅ)=ย limย ๐œŽโ†’๐‘ฅโˆซโˆ‚๐œŽ๐œ”Vol(๐œŽ)ย Vol using a box in coordinates. When all coordinates approach 0, it will be a partial derivative โˆ‚๐‘– of something calculated for each coordinate axis direction. The result is ๐‘‘๐œ”=๐‘‘(๐œ”๐‘–1โ‹ฏ๐‘–๐‘˜๐‘‘๐‘ฅ๐‘–1โˆงโ‹ฏโˆง๐‘‘๐‘ฅ๐‘–๐‘˜)=โˆ‚๐‘–๐œ”๐‘–1โ‹ฏ๐‘–๐‘˜๐‘‘๐‘ฅ๐‘–โˆง๐‘‘๐‘ฅ๐‘–1โˆงโ‹ฏโˆง๐‘‘๐‘ฅ๐‘–๐‘˜, further simplification is omitted for now.

Question What is the form of the exterior derivative calculation result in the barycentric coordinates of a simplex?

However, in the proof of the one-dimensional Fundamental Theorem of Calculus, the division of a one-dimensional interval, the boundary of a one-dimensional interval, and the integral of the boundary of a one-dimensional interval are all too simple. High-dimensional regions are not that simple.

Stokes-theorem-simple_(tag) For higher dimensions, it is difficult if it is curved. First, deal with straight things i.e. simplex or parallelepiped. The division is also the same type of region, and the boundary cancellation is also simple. Then, similar to one dimension, approximate with the Mean Value Theorem of Differential + compact control. This proves Stokes' theorem for โ„๐‘› simplex or parallelepiped.

Stokes-theorem-proof_(tag) Question

use the approximation method used in defining #link(<integral-on-manfold>)[]

Use countable + linear approximation + partition limit that used in the definition of form integral on manifold #link(<integral-on-manfold>)[]

Approximately decompose into simplex or box, then use Stokes theorem of simplex + internal boundary cancellation, only the real boundary of manifold is left

Need to use ๐‘›โˆ’1 form ๐œ” and #link(<integral-on-submanfold>)[]

Approximation on the boundary may require special attention. For example, approximations on boundaries shoud use simplex (box) centered on the boundary and differential at points on the boundary.

Probably need some kind of Sobolev control?

I have not deal with the Stokes theorem for manifold without boundary, have not define โˆ‚๐‘€โ‰”โˆ…โˆงโˆซโˆ‚๐‘€๐œ”โ‰”โˆซโˆ…๐œ”=0. Example of manifold without โ„๐‘›

Correspondence between boundary operator and exterior derivative

homology

cohomology

coboundary-operator_(tag)

coboundary ๐œ”๐‘˜=๐‘‘๐‘˜โˆ’1๐œ”๐‘˜โˆ’1

cocycle ๐‘‘๐œ”=0. Intuitively, the divergence of the form at this point is zero

๐‘‘2=0 or ๐‘‘๐‘˜๐‘‘๐‘˜โˆ’1=0

imย ๐‘‘โŠ‚ย kerย ๐‘‘ or imย ๐‘‘๐‘˜โˆ’1โŠ‚ย kerย ๐‘‘๐‘˜

de-Rham-cohomolgy_(tag) k-th de Rham cohomology ๐ป๐‘˜(๐‘€)=kerย ๐‘‘๐‘˜imย ๐‘‘๐‘˜โˆ’1

in โ„๐‘›, cohomology trivial โˆ€๐‘˜=1,โ€ฆ,๐‘›,๐ป๐‘˜=0

cohomology-hole_(tag) form with "hole". Example in โ„2, ๐‘‘1๐‘Ÿ or โˆ’๐‘ฅ2|๐‘ฅ|2๐‘‘๐‘ฅ1+๐‘ฅ1|๐‘ฅ|2๐‘‘๐‘ฅ2 has a singularity at ๐‘ฅ=0. In non-โ„๐‘› manifolds, the form and Stokes' theorem can reveal the holes in the manifold even if the function has no singularities. Example ๐•Š1 or ๐•Š1ร—๐•Š1

The case of metric manifolds

The integral of the ๐‘˜ form ๐œ” is equivalent to the integral of โŸจ๐œ”,ย Vol๐‘˜โŸฉย Vol๐‘˜

Hodge-star_(tag)

Hodge star operator as the orthogonal complement dual of the form

โ‹†:(โ‹€๐‘˜โ„๐‘›)โŠบโ†’(โ‹€๐‘›โˆ’๐‘˜โ„๐‘›)โŠบ

โ‹†๐œ” with ๐œ”โˆงโ‹†๐œ”=โŸจ๐œ”,๐œ”โŸฉย Vol๐‘› ==> ๐œ”โˆงโ‹†๐œ‚=โŸจ๐œ”,๐œ‚โŸฉย Vol๐‘›

โ‹†2=๐Ÿ™ ==> โŸจ๐œ”,๐œ‚โŸฉ=โŸจโ‹†๐œ”,โ‹†๐œ‚โŸฉ

โ‹†ย Volย ๐‘˜=ย Vol๐‘›โˆ’๐‘˜

flux_(tag)

Integral of ๐‘˜ form ๐œ” -> Integral of โŸจ๐œ”,ย Vol๐‘˜โŸฉย Vol๐‘˜ -> Integral of โŸจโ‹†๐œ”,โ‹†ย Vol๐‘›โˆ’๐‘˜โŸฉย Vol๐‘˜, interpreted as the quantity โŸจโ‹†๐œ”,ย Vol๐‘›โˆ’๐‘˜โŸฉ of the orthogonal complement โ‹†ย Volย ๐‘˜=ย Vol๐‘›โˆ’๐‘˜ of Vol๐‘˜ integrated over Vol๐‘˜, i.e. flux

Represent the flux ๐‘›โˆ’๐‘˜ alternating tensor using the inner product duality (โ‹†๐œ”)โ™ฏ,(ย Volย ๐‘›โˆ’1)โ™ฏโˆˆโ‹€๐‘›โˆ’๐‘˜โ„๐‘›, the inner product represents the orthogonal projection of the quantity (โ‹†๐œ”)โ™ฏ onto the flux direction (Vol๐‘›โˆ’1)โ™ฏ (image)

Example in Euclidean โ„3, โ‹€1โ„3โ‰ƒโ‹€2โ„3โ‰ƒโ„3.

  • 0 form

๐‘‘๐œ”โˆˆ(โ‹€1โ„3)โŠบโŸท(โ‹†๐‘‘๐œ”)โ™ฏ=ย gradย ๐œ”โˆˆโ‹€2โ„3

Coordinates

gradย ๐‘“=(โˆ‚1๐‘“โˆ‚2๐‘“โˆ‚3๐‘“)

Stokes' theorem gradient_(tag)

๐œ”(๐‘ฅ1)โˆ’๐œ”(๐‘ฅ0)=โˆซโˆ‚๐‘€๐œ”=โˆซ๐‘€๐‘‘๐œ”=โˆซ๐‘™โŸจgradย ๐œ”,๐‘‘๐‘™โŸฉ
  • 1 form

๐‘‘๐œ”โˆˆโ‹€2โ„3โŸท(โ‹†๐‘‘๐œ”)โ™ฏ=ย curlย ๐œ”โ™ฏโˆˆโ‹€1โ„3

Coordinates

curlย (๐‘ฃ1๐‘ฃ2๐‘ฃ3)=(โˆ‚2๐‘ฃ3โˆ’โˆ‚3๐‘ฃ2โˆ‚3๐‘ฃ1โˆ’โˆ‚1๐‘ฃ3โˆ‚1๐‘ฃ2โˆ’โˆ‚2๐‘ฃ1)

๐œ”โ™ฏโˆˆโ‹€1โ„3

Stokes' Theorem curl_(tag)

โˆซโˆ‚๐‘†โŸจ๐œ”โ™ฏ,๐‘‘๐‘™โŸฉ=โˆซโˆ‚๐‘€๐œ”=โˆซ๐‘€๐‘‘๐œ”=โˆซ๐‘†โŸจcurlย ๐œ”โ™ฏ,๐‘‘๐‘†โŸฉ

where ๐‘›=โ‹†ย Volย 2=ย Vol1

  • 2 form

๐‘‘๐œ”โˆˆโ‹€3โ„3โŸท(โ‹†๐‘‘๐œ”)โ™ฏ=๐œ”โ™ฏโˆˆโ‹€0โ„3

Coordinates

divย (๐‘ฃ1๐‘ฃ2๐‘ฃ3)=โˆ‚1๐‘ฃ1+โˆ‚2๐‘ฃ2+โˆ‚3๐‘ฃ3

โŸจ๐œ”|โˆˆโ‹€2โ„3

Stokes' Theorem divergence_(tag)

โˆซโˆ‚๐‘‰โŸจ๐œ”โ™ฏ,๐‘‘๐‘†โŸฉ=โˆซโˆ‚๐‘€๐œ”=โˆซ๐‘€๐‘‘๐œ”=โˆซ๐‘‰โŸจdivย ๐œ”โ™ฏ,๐‘‘๐‘‰โŸฉ

in Minkowski โ„1,3, โ‹€2โ„1,3โ‰ƒโ‹€4โˆ’2โ„1,3