1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

orientation-of-real-linear-space_(tag) โ„๐‘› ๆ–นๅ‘

๐ดโˆˆGL(๐‘›,โ„),ย detย ๐ดโ‰ 0

โ„โˆ–0=โ„<0โŠ”โ„>0

GL(๐‘›,โ„)=ย detโˆ’1(โ„<0)โŠ”ย detโˆ’1(โ„>0)

ๆœ‰ไธคไธชๆ–นๅ‘. ๅฏนไบŽ โ„๐‘› ๅ‘้‡ๅŸบ, ไบคๆขไธ€ๆฌก้กบๅบ ๐‘’๐‘–โ†”๐‘’๐‘— ไผšไฝฟๅพ—ๆ–นๅ‘ๆ”นๅ˜, ๅผ•ๅ…ฅ โˆ’1 ๅ› ๅญ. ่ฟ™ๅ’Œไบค้”™ๅผ ้‡ๆœ‰็›ธไผผไน‹ๅค„. ๆ–นๅ‘ๅฎšไน‰ไธบๅŸบ็š„ๅŒๅ‘ quotient, ็ญ‰ไปทไบŽ GL(๐‘›,โ„) ็š„ detโˆ’1(โ„<0)โŠ”ย detโˆ’1(โ„>0) ๅˆ†่งฃ

orientation-of-boundary-of-simplex_(tag)

simplx ๆœ‰ๅ‘่พน็•Œ. simplex {๐‘ฅ0,โ€ฆ,๐‘ฅ๐‘›} ่พน็•Œ {๐‘ฅ0,โ€ฆ,๐‘ฅ๐‘›โˆ–๐‘ฅ๐‘–} ็š„ๆ–นๅ‘ๆ˜ฏ, ็ป™่พน็•Œๆ‰€ๅœจ็š„ ๐‘›โˆ’1 ไปฟๅฐ„ๅญ็ฉบ้—ดๅฎšไน‰ๆ–นๅ‘, ไฝฟๅพ—ๅ†…้ƒจ ๐ด ๅœจ ๐‘› ็ปดๆญฃๆ–นๅ‘, ๅค–้ƒจ ๐ดโˆ ๅœจ ๐‘› ็ปด่ดŸๆ–นๅ‘

ๅฆ‚ๆžœๅฏน่พน็•Œ็š„่พน็•Œ็ปง็ปญๅฎšไน‰ๆ–นๅ‘, ๅฐฑไผšๅ‘็Žฐ็›ธ้‚ปๆ–นๅ‘ๆŠตๆถˆ

simplex ้กถ็‚นๆ นๆฎ ๐‘ฅ0โ†’๐‘ฅ1โ†’โ‹ฏโ†’๐‘ฅ๐‘› ๅฏไปฅๆž„้€  โ„๐‘› ๆœ‰ๅ‘ๅŸบ. ็ฝฎๆขไฝฟๅพ—ๆ–นๅ‘็›ธๅทฎ sign(๐œ‡)

้€‰ๅ– ๐‘ฅ0,โ€ฆ,๐‘ฅ๐‘› ไธบ โ„๐‘› ๆญฃๆ–นๅ‘ๅŽ, ่พน็•Œ็š„ๆ–นๅ‘ๆ˜ฏ (โˆ’1)๐‘–โˆ’1๐‘ฅ0,โ€ฆ,๐‘ฅ๐‘›โˆ–๐‘ฅ๐‘–

ๅฏน box ไนŸ็ฑปไผผ

Example ๅ››้ขไฝ“, ๅณๆ‰‹ๅฎšๅˆ™, ๆ‹‡ๆŒ‡ๆŒ‡ๅ‘ๅ››้ขไฝ“ๅ†…้ƒจๅพ—ๅˆฐ่พน็•Œๆ–นๅ‘ (ๅ›พ็‰‡็š„้กถ็‚น็š„ๆŒ‡ๆ ‡ไปŽ 1 ่€Œไธๆ˜ฏ 0 ๅผ€ๅง‹)

orientable-low-dim-polyhera_(tag) ๅคš้ขไฝ“ #link(<orientation-of-boundary-of-simplex>)[ๅฏๅฎšๅ‘] ๅฎšไน‰ไธบ, ็”จ simplex ๆž„้€ ๅคš้ขไฝ“ๆ—ถ, ่ƒฝๅคŸๅฏนๆ‰€ๆœ‰ ๐‘˜ simplex ๅฎšไน‰ๅ…ผๅฎน็š„ๆ–นๅ‘, ไฝฟๅพ—็›ธ้‚ปไธคไธช ๐‘˜ simplex ๐ด,๐ต ็š„ ๐‘˜โˆ’1 ็›ธๆŽฅ่พน็•Œ simplex ็š„ๆ–นๅ‘ๅ…ผๅฎน i.e. ๆ–นๅ‘ ๐‘‚ ๅฏนๅบ” simplex ๐ด ็š„ๅ†…้ƒจๅ’Œ simplex ๐ต ็š„ๅค–้ƒจ. ๆ–นๅ‘ โˆ’๐‘‚ ๅฏนๅบ” simplex ๐ต ็š„ๅ†…้ƒจๅ’Œ simplex ๐ด ็š„ๅค–้ƒจ. i.e. simplex ๅˆ†ๅ‰ฒๆœ‰่‰ฏๅฎšไน‰ๅ†…้ƒจๅ’Œๅค–้ƒจ

Mobius-strip_(tag) Example ไธๅฏๅฎšๅ‘็š„ Mobius ๅž‹ๅคš้ขไฝ“ (image modified from wiki)

ไธ็ฎกๆ€Žไนˆๅฎšไน‰ๆฏไธช ๐‘˜ simplex ็š„ๆ–นๅ‘, ้ƒฝๅญ˜ๅœจไธ€ๅฏน็›ธ้‚ป ๐‘˜ simplex ๐ด,๐ต ็š„ ๐‘˜โˆ’1 ็›ธๆŽฅ่พน็•Œ simplex ็š„ๆ–นๅ‘ไธๅ…ผๅฎน. i.e. simplex ๅˆ†ๅ‰ฒๆฒกๆœ‰่‰ฏๅฎšไน‰็š„ๅ†…้ƒจๅ’Œๅค–้ƒจ

ไปŽๅˆๅง‹ ๐‘˜ simplex ๅผ€ๅง‹, ไธๆ–ญไผ ้€’ๅœฐๅฏน็›ธ้‚ป ๐‘˜ simplex ๅฎšไน‰ๅ…ผๅฎน็š„ๆ–นๅ‘, ็ป•ไธ€ๅœˆไผšๅฏผ่‡ด็›ธๆŽฅ่พน็•Œ simplex ็š„ๆ–นๅ‘ไธๅ…ผๅฎน. ๆ–นๅ‘ ๐‘‚ ้ƒฝๅฏนๅบ” ๐ด,๐ต ๅ†…้ƒจ, ๆ–นๅ‘ โˆ’๐‘‚ ้ƒฝๅฏนๅบ” ๐ด,๐ต ๅค–้ƒจ

simplex-chain_(tag) simplex chain

boundary-operator_(tag)

่พน็•Œ็ฎ—ๅญ โˆ‚

boundary ๐‘๐‘˜=โˆ‚๐‘˜+1๐‘๐‘˜+1

Example

  • boundary-op-not-injective

  • tri-intersect-boundary_(tag)

cycle โˆ‚๐‘=0

โˆ‚2=0 or โˆ‚๐‘˜โˆ‚๐‘˜+1=0

imย โˆ‚โŠ‚ย kerย โˆ‚ or imย โˆ‚๐‘˜+1โŠ‚ย kerย โˆ‚๐‘˜

simplex-homology_(tag)

k-th homology ๐ป๐‘˜(โ„๐‘›)=kerย โˆ‚๐‘˜imย โˆ‚๐‘˜+1

where kerย โˆ‚๐‘˜,ย imย โˆ‚๐‘˜+1 ๅœจ ๐‘˜ chain ็ฉบ้—ด

็”ฑไบŽๅ‡ ไฝ•ๆ„ไน‰, ๅช้œ€่ฆ โ„ค ็ณปๆ•ฐ

real-linear-space-trivial-homology_(tag)

โ„๐‘› is trivial homology โˆ€๐‘˜=1,โ€ฆ,๐‘›,๐ป๐‘˜(โ„๐‘›)=0 or kerย โˆ‚๐‘˜=ย imย โˆ‚๐‘˜+1 or in โ„๐‘›, ๐‘ ็š„่พน็•Œๆ˜ฏ้›ถ <==> ๐‘ ๆ˜ฏ่พน็•Œ

Try to prove it by purely affine orientation & combinatorics technique, avoid Euclidean topology

existence-and-uniqueness-of-n-simplex-chain-with-boundary_(tag)

in โ„๐‘›, uniqueness ๐‘› chain of ๐‘›โˆ’1 boundary

๐ป๐‘›=0โŸนย kerย โˆ‚๐‘›=ย imย โˆ‚๐‘›+1=0

so existence of boundary of nonzero ๐‘› chain

โˆ€๐‘โˆˆ๐ถ๐‘›,โˆ‚๐‘=0โŸน๐‘โˆˆย kerย โˆ‚๐‘›=0โŸน๐‘=0

and uniqueness of ๐‘› dim region surround by codimย =1 boundary

(๐‘,๐‘โ€ฒโˆˆ๐ถ๐‘›)โˆง(โˆ‚๐‘›๐‘=โˆ‚๐‘›๐‘โ€ฒ)โŸนโˆ‚๐‘›(๐‘โˆ’๐‘โ€ฒ)=0โŸน๐‘โˆ’๐‘โ€ฒโˆˆย kerย โˆ‚๐‘›=0โŸน๐‘=๐‘โ€ฒ

homology-hole_(tag) ๅฏนไบŽ้›†ๅˆ โ„๐‘› ๅ‡ๅŽปๆœ‰้™ไธชๆˆ–ๅฏๆ•ฐไธชๅˆ†็ฆป็š„็บฟๆ€งๅญ็ฉบ้—ดๆˆ–่€…ๅคš้ขไฝ“, homology ไธๆ˜ฏ้›ถ

Stokes-theorem_(tag)

็ฑปไผผไบŽไธ€็ปด #link(<fundamental-theorem-of-calculus>)[ๅพฎ็งฏๅˆ†ๅŸบๆœฌๅฎš็†]

ๅœจๅๆ ‡้‡Œๅฎšไน‰ exterior-differential_(tag) ๐‘‘๐œ”(๐‘ฅ)=ย limย ๐œŽโ†’๐‘ฅโˆซโˆ‚๐œŽ๐œ”Vol(๐œŽ)ย Vol, ๅ…ถไธญ Vol ๆ˜ฏๅๆ ‡็š„ไฝ“็งฏ, ๐œŽ ๆ˜ฏไธ€ๅคง็ฑปๅž‹ๅŒบๅŸŸ, ่ฎก็ฎ—็ป“ๆžœไธไพ่ต–ไบŽๅๆ ‡้€‰ๅ–

ๅˆ™ๆœ‰ Stokes-theorem

for #link(<orientable>)[ๅฏๅฎšๅ‘] ็š„ๅ‡ ไนŽๅค„ๅค„่งฃๆž็š„ๅธฆ่พนๆตๅฝข, โˆซโˆ‚๐‘€๐œ”=โˆซ๐‘€๐‘‘๐œ” or โŸจโˆ‚๐‘€,๐œ”โŸฉ=โŸจ๐‘€,๐‘‘๐œ”โŸฉ

ๅๆ ‡ไธญๅˆฉ็”จ box ่ฎก็ฎ— ๐‘‘๐œ”(๐‘ฅ)=ย limย ๐œŽโ†’๐‘ฅโˆซโˆ‚๐œŽ๐œ”Vol(๐œŽ)ย Vol, ๅ…จ้ƒจๅๆ ‡่ถ‹ไบŽ 0, ๅฐ†ไผšๆ˜ฏๅฏนๆฏไธชๅๆ ‡่ฝดๆ–นๅ‘่ฎก็ฎ—ๅฏนๆŸไบ›ไธœ่ฅฟ็š„ๅๅพฎๅˆ† โˆ‚๐‘–, ็ป“ๆžœๆ˜ฏ ๐‘‘๐œ”=๐‘‘(๐œ”๐‘–1โ‹ฏ๐‘–๐‘˜๐‘‘๐‘ฅ๐‘–1โˆงโ‹ฏโˆง๐‘‘๐‘ฅ๐‘–๐‘˜)=โˆ‚๐‘–๐œ”๐‘–1โ‹ฏ๐‘–๐‘˜๐‘‘๐‘ฅ๐‘–โˆง๐‘‘๐‘ฅ๐‘–1โˆงโ‹ฏโˆง๐‘‘๐‘ฅ๐‘–๐‘˜, ่ฟ›ไธ€ๆญฅ็ฎ€ๅŒ–ๆš‚็•ฅ

Question simplex ไธญๅฟƒไปฟๅฐ„ๅๆ ‡ไธ‹, ๅค–ๅพฎๅˆ†็š„่ฎก็ฎ—็ป“ๆžœ็š„ๅฝขๅผๆ˜ฏไป€ไนˆ?

ไฝ†ๆ˜ฏๅœจไธ€็ปดๅพฎ็งฏๅˆ†ๅŸบๆœฌๅฎš็†็š„่ฏๆ˜Žไธญ, ไธ€็ปดๅŒบ้—ด็š„ๅˆ†ๅ‰ฒ, ไธ€็ปดๅŒบ้—ด็š„่พน็•Œ, ไธ€็ปดๅŒบ้—ด็š„่พน็•Œ็š„็งฏๅˆ†, ้ƒฝๅคช็ฎ€ๅ•ไบ†, ้ซ˜็ปดๅŒบๅŸŸๆฒก้‚ฃไนˆ็ฎ€ๅ•

Stokes-theorem-simple_(tag) ๅฏนไบŽ้ซ˜็ปด, ๅฆ‚ๆžœๆ˜ฏๅผฏๆ›ฒ็š„, ๅˆ™ๅพˆๅ›ฐ้šพ. ๅ…ˆๅค„็†็›ด็š„ไธœ่ฅฟ i.e. simplex or ๅนณ่กŒไฝ“. ๅˆ†ๅ‰ฒไนŸๆ˜ฏๅŒ็ฑปๅž‹ๅŒบๅŸŸ, ่พน็•ŒๆŠตๆถˆไนŸๅพˆ็ฎ€ๅ•. ๅ†็ฑปไผผไบŽไธ€็ปด, ็”จๅพฎๅˆ†ไธญๅ€ผๅฎš็†่ฟ‘ไผผ + compact ๆŽงๅˆถๅณๅฏ. ่ฟ™ๆ ทๅฐฑ่ฏๆ˜Žไบ† โ„๐‘› simplex or ๅนณ่กŒไฝ“็š„ Stokes ๅฎš็†

Stokes-theorem-proof_(tag) Question

ไฝฟ็”จๆตๅฝขไธŠ็š„ๅฏน form ็งฏๅˆ†็š„ๅฎšไน‰ๆ‰€ไฝฟ็”จ็š„่ฟ‘ไผผๆ–นๆณ• #link(<integral-on-manfold>)[]

่ฟ‘ไผผๅœฐๅˆ†่งฃไธบ simplex or box, ็„ถๅŽ็”จ simplex ็š„ stokes ๅฎš็† + ๅ†…้ƒจ่พน็•ŒๆŠตๆถˆ, ๅฐฑๅชๅ‰ฉไธ‹็œŸๆญฃ็š„ๆตๅฝข็š„่พน็•Œ

้œ€่ฆไฝฟ็”จ ๐‘›โˆ’1 form ๐œ” ๅฏนๅญๆตๅฝข็š„็งฏๅˆ† #link(<integral-on-submanfold>)[]

่พน็•ŒไธŠ็š„้€ผ่ฟ‘ๅฏ่ƒฝ้œ€่ฆ็‰นๅˆซๆณจๆ„. ไพ‹ๅฆ‚, ๅบ”่ฏฅ่ฎฉ่พน็•ŒไธŠ็š„้€ผ่ฟ‘ไฝฟ็”จไธญๅฟƒๅœจ่พน็•ŒไธŠ็š„ simplex (box) ไปฅๅŠๅพฎๅˆ† at ่พน็•ŒไธŠ็š„็‚น

ๅคงๆฆ‚้œ€่ฆ ๐‘›โˆ’1 form ็š„ๆŸ็ง Sobolev ๆŽงๅˆถ?

ๆˆ‘ๅนถๆฒกๆœ‰ๅฏนๆฒกๆœ‰่พน็•Œ็š„ๆตๅฝขๅค„็† Stokes ๅฎš็†, ๅนถๆฒกๆœ‰ๅฎšไน‰ โˆ‚๐‘€โ‰”โˆ…โˆงโˆซโˆ‚๐‘€๐œ”โ‰”โˆซโˆ…๐œ”=0. ๆฒกๆœ‰็š„่พน็•Œๆตๅฝข Example โ„๐‘›

่พน็•Œ็ฎ—ๅญไธŽๅค–ๅพฎๅˆ†็š„ๅฏนๅบ”ๆ€ง่ดจ

homology

cohomology

coboundary-operator_(tag)

coboundary ๐œ”๐‘˜=๐‘‘๐‘˜โˆ’1๐œ”๐‘˜โˆ’1

cocycle ๐‘‘๐œ”=0. ็›ด่ง‚ๆ˜ฏ่ฟ™ไธ€็‚น็š„ form ็š„ๆ•ฃๅบฆๆ˜ฏ้›ถ

๐‘‘2=0 or ๐‘‘๐‘˜๐‘‘๐‘˜โˆ’1=0

imย ๐‘‘โŠ‚ย kerย ๐‘‘ or imย ๐‘‘๐‘˜โˆ’1โŠ‚ย kerย ๐‘‘๐‘˜

de-Rham-cohomolgy_(tag) k-th de Rham cohomology ๐ป๐‘˜(๐‘€)=kerย ๐‘‘๐‘˜imย ๐‘‘๐‘˜โˆ’1

in โ„๐‘›, cohomology trivial โˆ€๐‘˜=1,โ€ฆ,๐‘›,๐ป๐‘˜=0

cohomology-hole_(tag) ๅธฆ "ๆดž" ็š„ form. Example in โ„2, ๐‘‘1๐‘Ÿ or โˆ’๐‘ฅ2|๐‘ฅ|2๐‘‘๐‘ฅ1+๐‘ฅ1|๐‘ฅ|2๐‘‘๐‘ฅ2 ๅœจ ๐‘ฅ=0 ๆ˜ฏๅฅ‡็‚น. ๅœจ้ž โ„๐‘› ็š„ๆตๅฝข, ๅฏ่ƒฝๅณไฝฟๅ‡ฝๆ•ฐๆฒกๆœ‰ๅฅ‡็‚น, form ๅ’Œ Stokes ๅฎš็†ไนŸ่ƒฝๅฐ†ๆตๅฝข็š„ๆดž่กจ็Žฐๅ‡บๆฅ. Example ๐•Š1 or ๐•Š1ร—๐•Š1

metric ๆตๅฝข็š„ๆƒ…ๅ†ต

ๅฏน ๐‘˜ form ๐œ” ็š„็งฏๅˆ†็›ธๅฝ“ไบŽๅฏน โŸจ๐œ”,ย Vol๐‘˜โŸฉย Vol๐‘˜ ็š„็งฏๅˆ†

Hodge-star_(tag)

Hodge star ็ฎ—ๅญ as form ็š„ๆญฃไบค่กฅๅฏนๅถ

โ‹†:(โ‹€๐‘˜โ„๐‘›)โŠบโ†’(โ‹€๐‘›โˆ’๐‘˜โ„๐‘›)โŠบ

โ‹†๐œ” with ๐œ”โˆงโ‹†๐œ”=โŸจ๐œ”,๐œ”โŸฉย Vol๐‘› ==> ๐œ”โˆงโ‹†๐œ‚=โŸจ๐œ”,๐œ‚โŸฉย Vol๐‘›

โ‹†2=๐Ÿ™ ==> โŸจ๐œ”,๐œ‚โŸฉ=โŸจโ‹†๐œ”,โ‹†๐œ‚โŸฉ

โ‹†ย Volย ๐‘˜=ย Vol๐‘›โˆ’๐‘˜

flux_(tag)

ๅฏน ๐‘˜ form ๐œ” ็งฏๅˆ† -> ๅฏน โŸจ๐œ”,ย Vol๐‘˜โŸฉย Vol๐‘˜ ็งฏๅˆ† -> ๅฏน โŸจโ‹†๐œ”,โ‹†ย Vol๐‘›โˆ’๐‘˜โŸฉย Vol๐‘˜ ็งฏๅˆ†, ่งฃ้‡Šไธบ้€š่ฟ‡ Vol๐‘˜ ็š„ๆญฃไบค่กฅ โ‹†ย Volย ๐‘˜=ย Vol๐‘›โˆ’๐‘˜ ็š„้‡ โŸจโ‹†๐œ”,ย Vol๐‘›โˆ’๐‘˜โŸฉ ๅฏน Vol๐‘˜ ็งฏๅˆ†, i.e. ้€š้‡

็”จ #link(<metric-dual>)[] (โ‹†๐œ”)โ™ฏ,(ย Volย ๐‘›โˆ’1)โ™ฏโˆˆโ‹€๐‘›โˆ’๐‘˜โ„๐‘› ไปฃ่กจ้€š้‡ ๐‘›โˆ’๐‘˜ ไบค้”™ๅผ ้‡, ๅ†…็งฏไปฃ่กจ้‡ (โ‹†๐œ”)โ™ฏ ๅœจ้€š้‡ๆ–นๅ‘ (Vol๐‘›โˆ’1)โ™ฏ ไธŠ็š„ๆญฃไบคๆŠ•ๅฝฑ

Example in Euclidean โ„3, โ‹€1โ„3โ‰ƒโ‹€2โ„3โ‰ƒโ„3 (ๅ›พ)

  • 0 form

๐‘‘๐œ”โˆˆ(โ‹€1โ„3)โŠบโŸท(โ‹†๐‘‘๐œ”)โ™ฏ=ย gradย ๐œ”โˆˆโ‹€2โ„3

ๅๆ ‡

gradย ๐‘“=(โˆ‚1๐‘“โˆ‚2๐‘“โˆ‚3๐‘“)

Stokes ๅฎš็† gradient_(tag)

๐œ”(๐‘ฅ1)โˆ’๐œ”(๐‘ฅ0)=โˆซโˆ‚๐‘€๐œ”=โˆซ๐‘€๐‘‘๐œ”=โˆซ๐‘™โŸจgradย ๐œ”,๐‘‘๐‘™โŸฉ
  • 1 form

๐‘‘๐œ”โˆˆโ‹€2โ„3โŸท(โ‹†๐‘‘๐œ”)โ™ฏ=ย curlย ๐œ”โ™ฏโˆˆโ‹€1โ„3

ๅๆ ‡

curlย (๐‘ฃ1๐‘ฃ2๐‘ฃ3)=(โˆ‚2๐‘ฃ3โˆ’โˆ‚3๐‘ฃ2โˆ‚3๐‘ฃ1โˆ’โˆ‚1๐‘ฃ3โˆ‚1๐‘ฃ2โˆ’โˆ‚2๐‘ฃ1)

๐œ”โ™ฏโˆˆโ‹€1โ„3

Stokes ๅฎš็† curl_(tag)

โˆซโˆ‚๐‘†โŸจ๐œ”โ™ฏ,๐‘‘๐‘™โŸฉ=โˆซโˆ‚๐‘€๐œ”=โˆซ๐‘€๐‘‘๐œ”=โˆซ๐‘†โŸจcurlย ๐œ”โ™ฏ,๐‘‘๐‘†โŸฉ

where ๐‘›=โ‹†ย Volย 2=ย Vol1

  • 2 form

๐‘‘๐œ”โˆˆโ‹€3โ„3โŸท(โ‹†๐‘‘๐œ”)โ™ฏ=๐œ”โ™ฏโˆˆโ‹€0โ„3

ๅๆ ‡

divย (๐‘ฃ1๐‘ฃ2๐‘ฃ3)=โˆ‚1๐‘ฃ1+โˆ‚2๐‘ฃ2+โˆ‚3๐‘ฃ3

๐œ”โ™ฏโˆˆโ‹€2โ„3

Stokes ๅฎš็† divergence_(tag)

โˆซโˆ‚๐‘‰โŸจ๐œ”โ™ฏ,๐‘‘๐‘†โŸฉ=โˆซโˆ‚๐‘€๐œ”=โˆซ๐‘€๐‘‘๐œ”=โˆซ๐‘‰โŸจdivย ๐œ”โ™ฏ,๐‘‘๐‘‰โŸฉ

in Minkowski โ„1,3, โ‹€2โ„1,3โ‰ƒโ‹€4โˆ’2โ„1,3