1. notice
  2. English
  3. 1. feature
  4. logic-topic
  5. 2. logic
  6. 3. set-theory
  7. 4. map
  8. 5. order
  9. 6. combinatorics
  10. calculus
  11. 7. real-numbers
  12. 8. limit-sequence
  13. 9. โ„^n
  14. 10. Euclidean-space
  15. 11. Minkowski-space
  16. 12. polynomial
  17. 13. analytic-Euclidean
  18. 14. analytic-Minkowski
  19. 15. analytic-struct-operation
  20. 16. ordinary-differential-equation
  21. 17. volume
  22. 18. integral
  23. 19. divergence
  24. 20. limit-net
  25. 21. compact
  26. 22. connected
  27. 23. topology-struct-operation
  28. 24. exponential
  29. 25. angle
  30. geometry
  31. 26. manifold
  32. 27. metric
  33. 28. metric-connection
  34. 29. geodesic-derivative
  35. 30. curvature-of-metric
  36. 31. Einstein-metric
  37. 32. constant-sectional-curvature
  38. 33. simple-symmetric-space
  39. 34. principal-bundle
  40. 35. group-action
  41. 36. stereographic-projection
  42. 37. Hopf-bundle
  43. field-theory
  44. 38. point-particle-non-relativity
  45. 39. point-particle-relativity
  46. 40. scalar-field
  47. 41. scalar-field-current
  48. 42. scalar-field-non-relativity
  49. 43. projective-lightcone
  50. 44. spacetime-momentum-spinor-representation
  51. 45. Lorentz-group
  52. 46. spinor-field
  53. 47. spinor-field-current
  54. 48. electromagnetic-field
  55. 49. Laplacian-of-tensor-field
  56. 50. Einstein-metric
  57. 51. interaction
  58. 52. harmonic-oscillator-quantization
  59. 53. spinor-field-misc
  60. 54. reference
  61. ไธญๆ–‡
  62. 55. notice
  63. 56. feature
  64. ้€ป่พ‘
  65. 57. ้€ป่พ‘
  66. 58. ้›†ๅˆ่ฎบ
  67. 59. ๆ˜ ๅฐ„
  68. 60. ๅบ
  69. 61. ็ป„ๅˆ
  70. ๅพฎ็งฏๅˆ†
  71. 62. ๅฎžๆ•ฐ
  72. 63. ๆ•ฐๅˆ—ๆž้™
  73. 64. โ„^n
  74. 65. Euclidean ็ฉบ้—ด
  75. 66. Minkowski ็ฉบ้—ด
  76. 67. ๅคš้กนๅผ
  77. 68. ่งฃๆž (Euclidean)
  78. 69. ่งฃๆž (Minkowski)
  79. 70. ่งฃๆž struct ็š„ๆ“ไฝœ
  80. 71. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  81. 72. ไฝ“็งฏ
  82. 73. ็งฏๅˆ†
  83. 74. ๆ•ฃๅบฆ
  84. 75. ็ฝ‘ๆž้™
  85. 76. ็ดง่‡ด
  86. 77. ่ฟž้€š
  87. 78. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  88. 79. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  89. 80. ่ง’ๅบฆ
  90. ๅ‡ ไฝ•
  91. 81. ๆตๅฝข
  92. 82. ๅบฆ่ง„
  93. 83. ๅบฆ่ง„็š„่”็ปœ
  94. 84. Levi-Civita ๅฏผๆ•ฐ
  95. 85. ๅบฆ่ง„็š„ๆ›ฒ็އ
  96. 86. Einstein ๅบฆ่ง„
  97. 87. ๅธธๆˆช้ขๆ›ฒ็އ
  98. 88. simple-symmetric-space
  99. 89. ไธปไธ›
  100. 90. ็พคไฝœ็”จ
  101. 91. ็ƒๆžๆŠ•ๅฝฑ
  102. 92. Hopf ไธ›
  103. ๅœบ่ฎบ
  104. 93. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  105. 94. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  106. 95. ็บฏ้‡ๅœบ
  107. 96. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  108. 97. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  109. 98. ๅ…‰้”ฅๅฐ„ๅฝฑ
  110. 99. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  111. 100. Lorentz ็พค
  112. 101. ๆ—‹้‡ๅœบ
  113. 102. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  114. 103. ็”ต็ฃๅœบ
  115. 104. ๅผ ้‡ๅœบ็š„ Laplacian
  116. 105. Einstein ๅบฆ่ง„
  117. 106. ็›ธไบ’ไฝœ็”จ
  118. 107. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  119. 108. ๆ—‹้‡ๅœบๆ‚้กน
  120. 109. ๅ‚่€ƒ

note-math

[flat-metric]

flat metric := a metric such that there exist coordinates where standard metric

The submanifold metric of inherited from is not flat-metric, but rather constant-sectional-curvature.

When does a flat metric exist?

Choose a coordinate , with metric

Assume transformation to with metric , then

Connection transformations

For flat metric , thus

Equivalently

This property, combined with the initial condition of , allows for the recovery of the flat metric using PDE, i.e., for proving

Proof

product-rule expansion of the above differential

linear PDE for

is solvable <==> satisfies linear-PDE-integrable-condition

where is geodesic-derivative

or

If is solved, integrating again with the initial condition yields , which gives the conversion function from coordinate to the flat-metric coordinate

In flat-metric coordinates , so the geodesic ODE is , so flat-metric coordinates will be geodesic coordinates

When not exist flat metric coordinate, choose Einstein-metric as minimal scalar-curvature

Now, do not assume flat metric

[curvature-of-metric]

Curvature ( from "Riemann")

is a tensor (even though is not)

name-overload: Curvature := metric-dual of curvature

In coordinates

[flat-metric-iff-curvature-0] flat-metric <==> curvature is zero

[curvature-determine-metric-locally]

"flat-metric <==> curvature zero" can be generalized to curvature determines local metric

If two metrics and their curvatures are related by a local diffeomorphism between points , and the differential is an isometry between the tangent spaces , then the local diffeomorphism is a local isometry of .

[curvature-in-geodesic-coordinate]

At the origin of geodesic coordinates, by calculation, through

  • metric-connection definition of and definition of curvature

we have

or

==> If in geodesic coordinates, the second order derivative of the Taylor expansion of the metric is also zero then the curvature is also zero , which leads to a flat-metric, and thus the higher order derivatives are also zero

[symmetry-of-curvature]

or

==>

Proof Definition of curvature in geodesic coordinates, expressed using or

[algebraic-curvature-tensor] The algebraic curvature tensor is defined to satisfy the above symmetries (ref-6, lect 8)

[curvature-product]

Mimicking the definition of curvature in geodesic coordinates, for second-order symmetric tensors , define the curvature-product

or

satisfies symmetry-of-curvature, so , or

At the origin of geodesic coordinates, the curvature is (formally)

Def

  • maps to itself and , i.e. wiki:Projection_(linear_algebra), so

  • For alternating tensors , , so

[dimension-of-algebraic-curvature] Using , we have the dimension of the algebraic curvature tensor space

where

metric is a tensor

Mapping

[adjoint-of-curvature-product] :=

For and and the tensor-induced-metric of

For each , the linear function

has the metric-adjoint of the space :=

The linear function can be represented by the metric of the space

In coordinates

is injective, and is surjective. Proof uses the pre-inverse and post-inverse of composite mappings. The construction method refers to the calculation in curvature-decomposition

metric-adjoint ==>

Linear mapping ==>

==>

Mapping

metric-adjoint :=

for and

so

In coordinates

is injective, is surjective

[curvature-decomposition-space]

Orthogonal decomposition into tensor subspace, and cannot be decomposed further, i.e., irreducible

[curvature-decomposition] forall , exists , orthogonal decomposition

Proof if it's true then

  • [Ricci-curvature]

    In coordinates

  • [scalar-curvature]

    In coordinates

  • [conformal-curvature] (named so because if it vanish then the metric conformally flat when ) ( from "Weyl")

Similarly, the orthogonal decomposition is

trace-free Ricci-curvature

Curvature Orthogonal Decomposition to Tensor Subspace

quadratic-form

[curvature-low-dimension] low dimension curvature

  • span by

  • , only type , and

  • is a bijection

  • is completely determined by

let

Curvature also appears in the Taylor expansion of metric geodesic coordinates

and satisfies

Note that this is an equality of sums , not an equality of coefficients

  • "trace" also appears in Taylor-expansion of metric volume-form , related to and

  • "trace" appears again in the volume of geodesic ball (for spacetime manifold should use multi radius?)

if scale matric

  • geodesic-derivative
  • curvature
  • curvature metric-dual
  • Ricci-curvature
  • sectional_curvature
  • scalar-curvature

When representing spacetime metric with signature , it is obtained by multiplying the signature by