1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

flat-metric_(tag)

flat metric := a metric such that there exist coordinates ๐‘ฆ where โˆ€๐‘ฅ,๐‘”(๐‘ฅ)=๐œ‚ standard metric

The submanifold metric of ๐•Š2 inherited from โ„3 is not #link(<flat-metric>)[], but rather #link(<quadratic-manifold-is-constant-sectional-curvature>)[constant-sectional-curvature].

When does a flat metric exist?

Choose a coordinate ๐‘ฆ, with metric ๐‘”

Assume transformation to ๐‘ฅ with metric ๐œ‚, then

  • ๐‘”=โˆ‚๐‘ฅโˆ‚๐‘ฆโŠบโ‹…๐œ‚โ‹…โˆ‚๐‘ฅโˆ‚๐‘ฆ

  • ๐‘”โˆ’1=โˆ‚๐‘ฆโˆ‚๐‘ฅโ‹…๐œ‚โ‹…โˆ‚๐‘ฆโˆ‚๐‘ฅโŠบ

  • โˆ‚๐‘ฅโˆ‚๐‘ฆโ‹…๐‘”โˆ’1โ‹…โˆ‚๐‘ฅโˆ‚๐‘ฆโŠบ=๐œ‚

#link(<connection-transformations>)[Connection transformations]

ฮ“(๐‘ฆ)=โˆ‚๐‘ฆโˆ‚๐‘ฅโ‹…ฮ“(๐‘ฅ)โ‹…โˆ‚๐‘ฅโˆ‚๐‘ฆ+โˆ‚๐‘ฆโˆ‚๐‘ฅโ‹…โˆ‚โˆ‚๐‘ฆ(โˆ‚๐‘ฅโˆ‚๐‘ฆ)

For flat metric ฮ“(๐‘ฅ)=0, thus

ฮ“(๐‘ฆ)=โˆ‚๐‘ฆโˆ‚๐‘ฅโ‹…โˆ‚โˆ‚๐‘ฆ(โˆ‚๐‘ฅโˆ‚๐‘ฆ)

Equivalently

โˆ‚โˆ‚๐‘ฆ(โˆ‚๐‘ฅโˆ‚๐‘ฆ)=โˆ‚๐‘ฅโˆ‚๐‘ฆโ‹…ฮ“(๐‘ฆ)

This property, combined with the initial condition of ๐‘, allows for the recovery of the flat metric using PDE, i.e., for proving

โˆ‚โˆ‚๐‘ฆ(โˆ‚๐‘ฅโˆ‚๐‘ฆโ‹…๐‘”โˆ’1โ‹…โˆ‚๐‘ฅโˆ‚๐‘ฆโŠบ)=0

Proof

product-rule expansion of the above differential

=(โˆ‚โˆ‚๐‘ฆ(โˆ‚๐‘ฅโˆ‚๐‘ฆ))โ‹…๐‘”โˆ’1โ‹…(โˆ‚๐‘ฅโˆ‚๐‘ฆ)โŠบ+โˆ‚๐‘ฅโˆ‚๐‘ฆโ‹…(โˆ‚โˆ‚๐‘ฆ(๐‘”โˆ’1))โ‹…(โˆ‚๐‘ฅโˆ‚๐‘ฆ)โŠบ+โˆ‚๐‘ฅโˆ‚๐‘ฆโ‹…๐‘”โˆ’1โ‹…(โˆ‚โˆ‚๐‘ฆ(โˆ‚๐‘ฅโˆ‚๐‘ฆ)โŠบ)ย thenย useย โˆ‚โˆ‚๐‘ฆ(โˆ‚๐‘ฅโˆ‚๐‘ฆ)=โˆ‚๐‘ฅโˆ‚๐‘ฆโ‹…ฮ“(๐‘ฆ)=โˆ‚๐‘ฅโˆ‚๐‘ฆโ‹…(๐‘”โˆ’1(ฮ“,)+โˆ‚๐‘”โˆ’1+๐‘”โˆ’1(,ฮ“))โ‹…(โˆ‚๐‘ฅโˆ‚๐‘ฆ)โŠบย seeย ย #link(<differenial-of-metric-inverse-vs-connection>)[link]ย =0

linear PDE for โˆ‚๐‘ฅโˆ‚๐‘ฆ

โˆ‚โˆ‚๐‘ฆ(โˆ‚๐‘ฅโˆ‚๐‘ฆ)=โˆ‚๐‘ฅโˆ‚๐‘ฆโ‹…ฮ“(๐‘ฆ)

is solvable <==> satisfies #link(<linear-PDE-integrable-condition>)[]

[โˆ‡๐‘–,โˆ‡๐‘–โ€ฒ]=0

where โˆ‡=โˆ‚+ฮ“ is #link(<geodesic-derivative>)[]

or

[โˆ‡๐‘ฃ,โˆ‡๐‘ฃโ€ฒ]โˆ’โˆ‡[๐‘ฃ,๐‘ฃโ€ฒ]=0

If โˆ‚๐‘ฅโˆ‚๐‘ฆ(๐‘ฆ) is solved, integrating again with the initial condition yields ๐‘ฅ(๐‘ฆ), which gives the conversion function from coordinate ๐‘ฆ to the flat-metric coordinate ๐‘ฅ

In flat-metric coordinates ฮ“=0, so the geodesic ODE is ๐‘ฅฬˆ=0, so flat-metric coordinates will be geodesic coordinates

When not exist flat metric coordinate, choose #link(<Einstein-metric>)[] as minimal #link(<scalar-curvature>)[]

Now, do not assume flat metric

curvature-of-metric_(tag)

Curvature (๐‘… from "Riemann")

  • ๐‘…๐‘–๐‘–โ€ฒ=[โˆ‡๐‘–,โˆ‡๐‘–โ€ฒ]
  • (๐‘…๐‘–๐‘–โ€ฒ)๐‘—๐‘—โ€ฒ=[โˆ‡๐‘–,โˆ‡๐‘–โ€ฒ]๐‘—๐‘—โ€ฒ

[โˆ‡๐‘–,โˆ‡๐‘–โ€ฒ] is a tensor (even though โˆ‡ is not)

name-overload: Curvature := #link(<metric-dual>)[] of curvature ๐‘…โ‰”๐‘”[โˆ‡๐‘–,โˆ‡๐‘–โ€ฒ]

In coordinates ๐‘…๐‘–๐‘–๐‘—โ€ฒ๐‘—โ€ฒ=๐‘”๐‘—โ€ฒ๐‘˜(๐‘…๐‘–๐‘–โ€ฒ)๐‘—๐‘˜

flat-metric-iff-curvature-0_(tag) flat-metric <==> curvature is zero

curvature-determine-metric-locally_(tag)

"flat-metric <==> curvature zero" can be generalized to curvature determines local metric

If two metrics ๐‘”,๐‘”โ€ฒ and their curvatures are related by a local diffeomorphism between points ๐‘,๐‘โ€ฒ, and the differential is an isometry between the tangent spaces ๐‘,๐‘ž, then the local diffeomorphism is a local isometry of ๐‘”,๐‘”โ€ฒ.

curvature-in-geodesic-coordinate_(tag)

At the origin ๐‘ of geodesic coordinates, by calculation, through

  • #link(<metric-connection>)[] definition of ฮ“ and definition of curvature ๐‘…
  • ฮ“(๐‘)=0

we have

๐‘…๐‘–1๐‘–2๐‘—1๐‘—2=12โˆ‘๐‘–,๐‘—โˆˆ2!sign(๐‘–)sign(๐‘—)โˆ‚๐‘–1๐‘—1๐‘”๐‘–2๐‘—2

or

๐‘…๐‘–๐‘–โ€ฒ๐‘—๐‘—โ€ฒ=12(โˆ‚๐‘–๐‘—๐‘”๐‘–โ€ฒ๐‘—โ€ฒ+โˆ‚๐‘–โ€ฒ๐‘—โ€ฒ๐‘”๐‘–๐‘—โˆ’โˆ‚๐‘–๐‘—โ€ฒ๐‘”๐‘–โ€ฒ๐‘—โˆ’โˆ‚๐‘–โ€ฒ๐‘—๐‘”๐‘–๐‘—โ€ฒ)

==> If in geodesic coordinates, the second order derivative of the Taylor expansion of the metric is also zero ๐‘”(๐‘+๐‘ฃ)=๐œ‚+๐‘œ(๐‘ฃ2), then the curvature is also zero ๐‘…=0, which leads to a flat-metric, and thus the higher order derivatives are also zero ๐‘œ(๐‘ฃ2)=0

symmetry-of-curvature_(tag)

  • ๐‘…๐‘–(12)๐‘—(12)=
  • โˆ’๐‘…๐‘–(21)๐‘—(12)
  • โˆ’๐‘…(๐‘–(12)๐‘—(21)
  • ๐‘…๐‘—(12)๐‘–(12)
  • โˆ‘cyclicย (123)๐‘…๐‘–(123)๐‘—=0

or

  • ๐‘…๐‘–๐‘–โ€ฒ๐‘—๐‘—โ€ฒ=
  • โˆ’๐‘…๐‘–โ€ฒ๐‘–๐‘—๐‘—โ€ฒ
  • โˆ’๐‘…๐‘–๐‘–โ€ฒ๐‘—โ€ฒ๐‘—
  • ๐‘…๐‘—๐‘—โ€ฒ๐‘–๐‘–โ€ฒ
  • ๐‘…๐‘–๐‘–โ€ฒ๐‘–โ€ณ๐‘—+๐‘…๐‘–โ€ฒ๐‘–โ€ณ๐‘–๐‘—+๐‘…๐‘–โ€ณ๐‘–๐‘–โ€ฒ๐‘—=0

==> ๐‘…โˆˆโจ€2(โ‹€2๐‘‰โŠบ)

Proof Definition of curvature ๐‘… in geodesic coordinates, expressed using ฮ“ or ๐‘”

algebraic-curvature-tensor_(tag) The algebraic curvature tensor is defined to satisfy the above symmetries (ref-6, lect 8)

curvature-product_(tag)

Mimicking #link(<curvature-in-geodesic-coordinate>)[the definition of curvature in geodesic coordinates], for second-order symmetric tensors ๐‘‡,๐‘†โˆˆโจ€2๐‘‰โŠบ, define the curvature-product

(๐‘‡โง€๐‘†)๐‘–1๐‘–2๐‘—1๐‘—2=โˆ‘๐‘–,๐‘—โˆˆ2!sign(๐‘–)sign(๐‘—)๐‘‡๐‘–1๐‘—1๐‘†๐‘–2๐‘—2

or

(๐‘‡โง€๐‘†)๐‘–๐‘–โ€ฒ๐‘—๐‘—โ€ฒ=๐‘‡๐‘–๐‘—๐‘†๐‘–โ€ฒ๐‘—โ€ฒ+๐‘‡๐‘–โ€ฒ๐‘—โ€ฒ๐‘†๐‘–๐‘—โˆ’๐‘‡๐‘–๐‘—โ€ฒ๐‘†๐‘–โ€ฒ๐‘—โˆ’๐‘‡๐‘–โ€ฒ๐‘—๐‘†๐‘–๐‘—โ€ฒ

๐‘‡โง€๐‘† satisfies #link(<symmetry-of-curvature>)[], so ๐‘‡โง€๐‘†โˆˆย curvature, or โง€:(โจ€2๐‘‰โŠบ)2โ†’ย curvature

At the origin of geodesic coordinates, the curvature is (formally)

๐‘…=12(โˆ‚2โง€๐‘”)

Def ๐‘“(๐‘…๐‘–(1234))โ‰”โˆ‘cyclicย (123)๐‘…๐‘–(123)๐‘–(4)

  • ๐‘“ maps ๐‘‡โˆˆโจ€2(โ‹€2๐‘‰โŠบ) to itself and ๐‘“2=๐‘“, i.e. wiki:Projection_(linear_algebra), so โจ€2(โ‹€2๐‘‰โŠบ)=ย kerย ๐‘“โŠ•ย imย ๐‘“

  • kerย ๐‘“=ย curvature

  • For alternating tensors ๐‘‡,๐‘†โˆˆโ‹€2๐‘‰โŠบ, ๐‘“(๐‘‡โŠ™๐‘†)=๐‘‡โˆง๐‘†, so im(๐‘“)=โ‹€4๐‘‰โŠบ

dimension-of-algebraic-curvature_(tag) Using domainย kernelย โ‰ƒย image, we have the dimension of the algebraic curvature tensor space

dim(curvatureย )=dim(โจ€2(โ‹€2๐‘‰โŠบ))โˆ’dim(โ‹€4๐‘‰โŠบ)=112๐‘›2(๐‘›2โˆ’1)

where ๐‘›=ย dimย ๐‘‰

metric is a tensor ๐‘”โˆˆโจ€2๐‘‰โŠบ

Mapping ๐‘”โง€:โจ€2๐‘‰โŠบโ†’ย curvature

adjoint-of-curvature-product_(tag) (๐‘”โง€)โ€ :ย curvatureย โ†’โจ€2๐‘‰โŠบ :=

For ๐‘‡โˆˆโจ€2๐‘‰โŠบ and ๐‘†โˆˆย curvature and the #link(<tensor-induced-metric>)[] of curvature,โจ€2๐‘‰โŠบ

๐‘”(๐‘”โง€๐‘‡,๐‘†)=๐‘”(๐‘‡,(๐‘”โง€)โ€ ๐‘†)

For each ๐‘†โˆˆย curvature, the linear function

(๐‘‡โ‡๐‘”(๐‘”โง€๐‘‡,๐‘†))โˆˆ(โจ€2๐‘‰โŠบ)โŠบ

has the metric-adjoint of the โจ€2๐‘‰โŠบ space :=

(๐‘”โง€)โ€ (๐‘†)โˆˆโจ€2๐‘‰โŠบ

The linear function ๐‘‡โ‡๐‘”(๐‘”โง€๐‘‡,๐‘†) can be represented by the metric of the โจ€2๐‘‰โŠบ space

๐‘‡โ‡๐‘”(๐‘‡,(๐‘”โง€)โ€ ๐‘†)

In coordinates ((๐‘”โง€)โ€ ๐‘†)๐‘–๐‘—=4๐‘”๐‘–โ€ฒ๐‘—โ€ฒ๐‘†๐‘–๐‘–โ€ฒ๐‘—๐‘—โ€ฒ

๐‘”โง€ is injective, and (๐‘”โง€)โ€  is surjective. Proof uses the pre-inverse and post-inverse of composite mappings. The construction method refers to the calculation in #link(<curvature-decomposition>)[]

dim(im(๐‘”โง€)โ€ )=dim(im(๐‘”โง€))=ย dimย โจ€2๐‘‰โŠบ

metric-adjoint (๐‘”โง€)โ€  ==> ker(๐‘”โง€)โ€ โŸ‚im(๐‘”โง€)โŠ‚ย curvature

Linear mapping (๐‘”โง€)โ€  ==> dimย ker(๐‘”โง€)โ€ +ย dimย im(๐‘”โง€)โ€ =ย curvature

==> ker(๐‘”โง€)โ€ โŸ‚im(๐‘”โง€)=ย curvature

Mapping ๐‘”โ‹…:โ„โ†’โจ€2๐‘‰โŠบ

metric-adjoint (๐‘”โ‹…)โ€ :โจ€2๐‘‰โŠบโ†’โ„ :=

for ๐‘Ÿโˆˆโ„ and ๐‘‡โˆˆโจ€2๐‘‰โŠบ

๐‘”(๐‘”โ‹…๐‘Ÿ,๐‘‡)=๐‘”(๐‘Ÿ,(๐‘”โ‹…)โ€ ๐‘‡)=๐‘Ÿโ‹…((๐‘”โ‹…)โ€ ๐‘‡)

๐‘”(๐‘”โ‹…๐‘Ÿ,๐‘‡)=๐‘Ÿโ‹…๐‘”(๐‘”,๐‘‡) so (๐‘”โ‹…)โ€ ๐‘‡=๐‘”(๐‘”,๐‘‡)

In coordinates ๐‘”(๐‘”,๐‘‡)=๐‘”๐‘–๐‘—๐‘‡๐‘–๐‘—

๐‘”โ‹… is injective, (๐‘”โ‹…)โ€  is surjective

dim(im(๐‘”โ‹…)โ€ )=dim(im(๐‘”โ‹…))

ker(๐‘”โ‹…)โ€ โŸ‚im(๐‘”โ‹…)=โจ€2๐‘‰โŠบ=im(๐‘”โง€)โ€ 

curvature-decomposition-space_(tag)

curvatureย =ker(๐‘”โง€)โ€ โŸ‚ker(๐‘”โ‹…)โ€ โŸ‚im(๐‘”โ‹…)

Orthogonal decomposition into tensor subspace, and cannot be decomposed further, i.e., irreducible

curvature-decomposition_(tag) forall ๐‘‡โˆˆย curvature, exists ๐‘†โˆˆโจ€2๐‘‰โŠบ, orthogonal decomposition ๐‘‡=๐‘ˆ+๐‘”โง€๐‘†โˆˆker(๐‘”โง€)โ€ โŠ•im(๐‘”โง€)

Proof if it's true then

14(๐‘”โง€)โ€ ๐‘‡=(๐‘”โง€)โ€ (๐‘”โง€)๐‘†=(๐‘›โˆ’2)๐‘†+๐‘”โ‹…๐‘”(๐‘”,๐‘†)

14(๐‘”โ‹…)โ€ (๐‘”โง€)โ€ ๐‘‡=(๐‘›โˆ’2)โ‹…๐‘”(๐‘”,๐‘†)+๐‘”(๐‘”,๐‘”)โ‹…๐‘”(๐‘”,๐‘†)=2(๐‘›โˆ’1)โ‹…๐‘”(๐‘”,๐‘†)

๐‘†=14(๐‘›โˆ’2)((๐‘”โง€)โ€ ๐‘‡โˆ’12(๐‘›โˆ’1)๐‘”โ‹…(๐‘”โ‹…)โ€ (๐‘”โง€)โ€ ๐‘‡)

  • Ricci-curvature_(tag) Ricย โ‰”14(๐‘”โง€)โ€ ๐‘…

    In coordinates Ric(๐‘–๐‘—)=๐‘”๐‘–โ€ฒ๐‘—โ€ฒ๐‘…๐‘–๐‘–โ€ฒ๐‘—๐‘—โ€ฒ

  • scalar-curvature_(tag) scalย โ‰”14(๐‘”โ‹…)โ€ (๐‘”โง€)โ€ ๐‘…

    In coordinates scalย =๐‘”๐‘–๐‘—๐‘”๐‘–โ€ฒ๐‘—โ€ฒ๐‘…๐‘–๐‘–โ€ฒ๐‘—๐‘—โ€ฒ

  • conformal-curvature_(tag) ๐‘Šโ‰”๐‘…โˆ’๐‘”โง€1๐‘›โˆ’2(Ricย โˆ’12(๐‘›โˆ’1)โ‹…๐‘”โ‹…ย scal)โˆˆker(๐‘”โง€)โ€  (named so because if it vanish then the metric conformally flat when ๐‘›โ‰ฅ4) (๐‘Š from "Weyl")

Similarly, the orthogonal decomposition โจ€2๐‘‰โŠบ=ker(๐‘”โ‹…)โ€ โŠ•im(๐‘”โ‹…) is (๐‘†โˆ’1๐‘›โ‹…๐‘”โ‹…(๐‘”โ‹…)โ€ ๐‘†)+1๐‘›โ‹…๐‘”โ‹…(๐‘”โ‹…)โ€ ๐‘†

trace-free Ricci-curvature tr-free-Ricย โ‰”ย Ricย โˆ’1๐‘›โ‹…๐‘”โ‹…ย scalย โˆˆker(๐‘”โ‹…)โ€ 

Curvature Orthogonal Decomposition to Tensor Subspace

curvatureย =ker(๐‘”โง€)โ€ โŠ•ker(๐‘”โ‹…)โ€ โŠ•im(๐‘”โ‹…)

๐‘…=๐‘Š+1๐‘›โˆ’2โ‹…๐‘”โง€ย tr-free-Ricย +12๐‘›(๐‘›โˆ’1)โ‹…ย scalย โ‹…๐‘”โง€๐‘”

quadratic-form

|๐‘…|2=|๐‘Š|2+4๐‘›โˆ’2|tr-free-Ric|2+2๐‘›(๐‘›โˆ’1)ย scalย 2=|๐‘Š|2+4๐‘›โˆ’2|Ric|2โˆ’2๐‘›(๐‘›โˆ’1)ย scal2

curvature-low-dimension_(tag) low dimension curvature

  • ๐‘›=0,1โŸนdim(ย curvatureย )=0

  • ๐‘›=2โŸนdim(ย curvatureย )=1 span by ๐‘”โง€๐‘”

  • ๐‘…=12ย scalย ๐‘”โง€๐‘”, only type ๐‘…1212โ‰ 0, and ๐‘”โง€๐‘”โˆผ๐‘”11๐‘”12โˆ’๐‘”122=det(๐‘”)

  • Ricย =12ย scalย ๐‘”

  • ๐‘›=3โŸนdim(ย curvatureย )=6
  • ๐‘”โง€:โจ€2๐‘‰โŠบโ†’ย curvature is a bijection

  • ๐‘Š=0

  • ๐‘… is completely determined by Ricย =14(๐‘”โง€)โ€ ๐‘…

let โˆ‚๐‘”๐‘–๐‘–โ€ฒโˆ‚๐‘ฅ๐‘—โˆ‚๐‘ฅ๐‘—โ€ฒ=๐‘”๐‘–๐‘–โ€ฒ,๐‘—๐‘—โ€ฒ

Curvature also appears in the Taylor expansion of metric geodesic coordinates

๐‘”๐‘–๐‘–โ€ฒ=๐œ‚๐‘–๐‘–โ€ฒ+(โˆ‚๐‘—๐‘—โ€ฒ๐‘”๐‘–๐‘–โ€ฒ)๐‘ฃ๐‘—๐‘ฃ๐‘—โ€ฒ+๐‘œ(๐‘ฃ2)

and satisfies

(โˆ‚๐‘—๐‘—โ€ฒ๐‘”๐‘–๐‘–โ€ฒ)๐‘ฃ๐‘—๐‘ฃ๐‘—โ€ฒ=โˆ’13๐‘…๐‘–๐‘—๐‘–โ€ฒ๐‘—โ€ฒ๐‘ค๐‘—๐‘ค๐‘—โ€ฒ

Note that this is an equality of sums โˆ‘๐‘—๐‘—โ€ฒ, not an equality of coefficients

  • "trace" (๐‘”โง€)โ€  also appears in Taylor-expansion of metric volume-form |๐‘”|=|detย (๐‘”๐‘–๐‘—)|12, related to det(๐Ÿ™+๐ด)=๐Ÿ™+tr(๐ด)+๐‘œ(๐ด) and (1+๐‘ฅ)12=1+12๐‘ฅ+๐‘œ(๐‘ฅ)

    |๐‘”|=1โˆ’16Ric(๐‘ฃ,๐‘ฃ)+๐‘œ(๐‘ฃ2)
  • "trace" (๐‘”โ‹…)โ€  appears again in the volume of geodesic ball (for spacetime manifold should use multi radius?)

    Vol(geodesic-ball(๐‘Ÿ))Vol(ball(๐‘Ÿ))=1โˆ’16(๐‘›+2)ย scalย ๐‘Ÿ2+๐‘œ(๐‘Ÿ2)

โˆ‡๐‘‹๐‘Œโˆ’โˆ‡๐‘Œ๐‘‹=[๐‘‹,๐‘Œ]

if scale matric ๐‘”โ‡๐œ†๐‘”

  • geodesic-derivative โˆ‡
  • curvature [โˆ‡๐‘–,โˆ‡๐‘–โ€ฒ]
  • curvature metric-dual ๐œ†๐‘”[โˆ‡๐‘–,โˆ‡๐‘–โ€ฒ]
  • Ricci-curvature 1๐œ†ย Ric
  • #link(<sectional_curvature>)[] 1๐œ†๐พ
  • scalar-curvature 1๐œ†ย scal

When representing spacetime metric with signature (3,1), it is obtained by multiplying the (1,3) signature by ๐œ†=โˆ’1