1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๆ—‹้‡ๅœบๆ‚้กน
  60. 54. ๅ‚่€ƒ
  61. English
  62. 55. notice
  63. 56. feature
  64. logic-topic
  65. 57. logic
  66. 58. set-theory
  67. 59. map
  68. 60. order
  69. 61. combinatorics
  70. calculus
  71. 62. real-numbers
  72. 63. limit-sequence
  73. 64. โ„^n
  74. 65. Euclidean-space
  75. 66. Minkowski-space
  76. 67. polynomial
  77. 68. analytic-Euclidean
  78. 69. analytic-Minkowski
  79. 70. analytic-struct-operation
  80. 71. ordinary-differential-equation
  81. 72. volume
  82. 73. integral
  83. 74. divergence
  84. 75. limit-net
  85. 76. compact
  86. 77. connected
  87. 78. topology-struct-operation
  88. 79. exponential
  89. 80. angle
  90. geometry
  91. 81. manifold
  92. 82. metric
  93. 83. metric-connection
  94. 84. geodesic-derivative
  95. 85. curvature-of-metric
  96. 86. Einstein-metric
  97. 87. constant-sectional-curvature
  98. 88. simple-symmetric-space
  99. 89. principal-bundle
  100. 90. group-action
  101. 91. stereographic-projection
  102. 92. Hopf-bundle
  103. field-theory
  104. 93. point-particle-non-relativity
  105. 94. point-particle-relativity
  106. 95. scalar-field
  107. 96. scalar-field-current
  108. 97. scalar-field-non-relativity
  109. 98. projective-lightcone
  110. 99. spacetime-momentum-spinor-representation
  111. 100. Lorentz-group
  112. 101. spinor-field
  113. 102. spinor-field-current
  114. 103. electromagnetic-field
  115. 104. Laplacian-of-tensor-field
  116. 105. Einstein-metric
  117. 106. interaction
  118. 107. harmonic-oscillator-quantization
  119. 108. spinor-field-misc
  120. 109. reference

note-math

[flat-metric]

flat metric := a metric such that there exist coordinates where standard metric

The submanifold metric of inherited from is not flat-metric, but rather constant-sectional-curvature.

When does a flat metric exist?

Choose a coordinate , with metric

Assume transformation to with metric , then

Connection transformations

For flat metric , thus

Equivalently

This property, combined with the initial condition of , allows for the recovery of the flat metric using PDE, i.e., for proving

Proof

product-rule expansion of the above differential

linear PDE for

is solvable <==> satisfies linear-PDE-integrable-condition

where is geodesic-derivative

or

If is solved, integrating again with the initial condition yields , which gives the conversion function from coordinate to the flat-metric coordinate

In flat-metric coordinates , so the geodesic ODE is , so flat-metric coordinates will be geodesic coordinates

When not exist flat metric coordinate, choose Einstein-metric as minimal scalar-curvature

Now, do not assume flat metric

[curvature-of-metric]

Curvature ( from "Riemann")

is a tensor (even though is not)

name-overload: Curvature := metric-dual of curvature

In coordinates

[flat-metric-iff-curvature-0] flat-metric <==> curvature is zero

[curvature-determine-metric-locally]

"flat-metric <==> curvature zero" can be generalized to curvature determines local metric

If two metrics and their curvatures are related by a local diffeomorphism between points , and the differential is an isometry between the tangent spaces , then the local diffeomorphism is a local isometry of .

[curvature-in-geodesic-coordinate]

At the origin of geodesic coordinates, by calculation, through

  • metric-connection definition of and definition of curvature

we have

or

==> If in geodesic coordinates, the second order derivative of the Taylor expansion of the metric is also zero then the curvature is also zero , which leads to a flat-metric, and thus the higher order derivatives are also zero

[symmetry-of-curvature]

or

==>

Proof Definition of curvature in geodesic coordinates, expressed using or

[algebraic-curvature-tensor] The algebraic curvature tensor is defined to satisfy the above symmetries (ref-6, lect 8)

[curvature-product]

Mimicking the definition of curvature in geodesic coordinates, for second-order symmetric tensors , define the curvature-product

or

satisfies symmetry-of-curvature, so , or

At the origin of geodesic coordinates, the curvature is (formally)

Def

  • maps to itself and , i.e. wiki:Projection_(linear_algebra), so

  • For alternating tensors , , so

[dimension-of-algebraic-curvature] Using , we have the dimension of the algebraic curvature tensor space

where

metric is a tensor

Mapping

[adjoint-of-curvature-product] :=

For and and the tensor-induced-metric of

For each , the linear function

has the metric-adjoint of the space :=

The linear function can be represented by the metric of the space

In coordinates

is injective, and is surjective. Proof uses the pre-inverse and post-inverse of composite mappings. The construction method refers to the calculation in curvature-decomposition

metric-adjoint ==>

Linear mapping ==>

==>

Mapping

metric-adjoint :=

for and

so

In coordinates

is injective, is surjective

[curvature-decomposition-space]

Orthogonal decomposition into tensor subspace, and cannot be decomposed further, i.e., irreducible

[curvature-decomposition] forall , exists , orthogonal decomposition

Proof if it's true then

  • [Ricci-curvature]

    In coordinates

  • [scalar-curvature]

    In coordinates

  • [conformal-curvature] (named so because if it vanish then the metric conformally flat when ) ( from "Weyl")

Similarly, the orthogonal decomposition is

trace-free Ricci-curvature

Curvature Orthogonal Decomposition to Tensor Subspace

quadratic-form

[curvature-low-dimension] low dimension curvature

  • span by

  • , only type , and

  • is a bijection

  • is completely determined by

let

Curvature also appears in the Taylor expansion of metric geodesic coordinates

and satisfies

Note that this is an equality of sums , not an equality of coefficients

  • "trace" also appears in Taylor-expansion of metric volume-form , related to and

  • "trace" appears again in the volume of geodesic ball (for spacetime manifold should use multi radius?)

if scale matric

  • geodesic-derivative
  • curvature
  • curvature metric-dual
  • Ricci-curvature
  • sectional_curvature
  • scalar-curvature

When representing spacetime metric with signature , it is obtained by multiplying the signature by