1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

sectional-curvature_(tag)

According to #link(<symmetry-of-curvature>)[], curvatureย โŠ‚โจ€2โ‹€2๐‘‰โŠบ

Sectional curvature is a quadratic form (possibly degenerate) restricted to the direction space โ‹€2๐‘‰โŠบ i.e. restricted to unit length

๐พ(๐‘‹โˆง๐‘Œ)=๐‘…(๐‘‹โˆง๐‘Œ,๐‘‹โˆง๐‘Œ)|๐‘‹โˆง๐‘Œ|2

Curvature can be recovered from sectional-curvature. Proof does not require non-degeneracy, symmetric bilinear forms can be recovered from quadratic forms

Prop 12โ‹…(๐‘”โง€๐‘”)(๐‘‹โˆง๐‘Œ,๐‘‹โˆง๐‘Œ)=|๐‘‹โˆง๐‘Œ|2

constant-sectional-curvature_(tag) ๐พ(๐‘‹โˆง๐‘Œ)=ย const <==>

(๐‘…=12๐‘›(๐‘›โˆ’1)โ‹…ย scalย โ‹…๐‘”โง€๐‘”)โˆง(scalย =ย const)

i.e. the curvature only has a scalar part and the scalar curvature is constant

Proof

constant-sectional-curvature <==> ๐‘…(๐‘‹โˆง๐‘Œ,๐‘‹โˆง๐‘Œ)=๐œ†|๐‘‹โˆง๐‘Œ|2=๐œ†โ‹…12โ‹…(๐‘”โง€๐‘”)(๐‘‹โˆง๐‘Œ,๐‘‹โˆง๐‘Œ)

<==> ๐‘…โˆ’๐œ†โ‹…12โ‹…๐‘”โง€๐‘” is a zero quadratic form

<==> ๐‘…=๐œ†โ‹…12โ‹…๐‘”โง€๐‘”

The orthogonal decomposition of curvature gives ๐‘…=12๐‘›(๐‘›โˆ’1)โ‹…ย scalย โ‹…๐‘”โง€๐‘” with scalย =ย constant

constant-sectional-curvature-imply-Einstein-metric_(tag)

Proof trace-free Ricci-curvature = 0

constant-sectional-curvature-low-dimension_(tag)

  • dimย =2 ==> constant-sectional-curvature = Einstein-metric = constant-scalar-curvature

  • dimย =3 ==> constant-sectional-curvature = Einstein-metric Proof 3D ๐‘Š=0 + (Einstein <==> tr-free-Ricย =0)

quadratic-manifold_(tag) :=

โ„š๐‘,๐‘ž(ยฑ1)={๐‘ฅโˆˆโ„๐‘,๐‘ž:โŸจ๐‘ฅโŸฉ2=ยฑ1}

where โŸจ๐‘ฅโŸฉ2=โˆ‘ย signย ย signย โˆ‘๐‘–ย signย ๐‘ฅ๐‘–ย signย 2=๐‘ฅ12+โ‹ฏ+๐‘ฅ๐‘2โˆ’(๐‘ฅ๐‘+12+โ‹ฏ+๐‘ฅ๐‘+๐‘ž2)

quadratic-manifold-is-constant-sectional-curvature_(tag) Quadratic manifold โ„š๐‘,๐‘ž(ยฑ๐‘Ž2) has constant-sectional-curvature ๐‘…=1ยฑ2๐‘Ž2๐‘”โง€๐‘”

Proof

Using submanifold techniques. A point ๐‘ฅ on the submanifold โ„š(๐‘,๐‘ž)(ยฑ๐‘Ž2) has tangent space and normal space in โ„๐‘,๐‘ž

Submanifold geodesic coordinates for the point ๐‘ฅโˆˆโ„š(๐‘,๐‘ž)(ยฑ๐‘Ž2) + normal space as coordinates for the manifold โ„๐‘,๐‘ž

The coordinate-frame โˆ‚๐‘– of โ„๐‘,๐‘ž at point ๐‘ฅ in these coordinates is orthonormal

Separate tangent, normal, ฮ“=ฮ“โŠค+ฮ“โŸ‚

The metric-dual of curvature ๐‘”[โˆ‡๐‘–,โˆ‡๐‘–โ€ฒ]=๐‘”[โˆ‚๐‘–+ฮ“๐‘–,โˆ‚๐‘–โ€ฒ+ฮ“๐‘–โ€ฒ]

==> ๐‘…๐‘–๐‘—๐‘–โ€ฒ๐‘—โ€ฒโŠค=๐‘…๐‘–๐‘—๐‘–โ€ฒ๐‘—โ€ฒ+๐‘”(ฮ“๐‘–๐‘—โŸ‚,ฮ“๐‘–โ€ฒ๐‘—โ€ฒโŸ‚)โˆ’๐‘”(ฮ“๐‘–๐‘—โ€ฒโŸ‚,ฮ“๐‘–โ€ฒ๐‘—โŸ‚)

The curvature of โ„๐‘,๐‘ž is zero ๐‘…๐‘–๐‘—๐‘–โ€ฒ๐‘—โ€ฒ=0

==> ๐‘…๐‘–๐‘—๐‘–โ€ฒ๐‘—โ€ฒโŠค=๐‘”(ฮ“๐‘–๐‘—โŸ‚,ฮ“๐‘–โ€ฒ๐‘—โ€ฒโŸ‚)โˆ’๐‘”(ฮ“๐‘–๐‘—โ€ฒโŸ‚,ฮ“๐‘–โ€ฒ๐‘—โŸ‚)

Quadratic manifold co-dimension 1, normal space dimension 1, normal field ฮ“๐‘–๐‘—โŸ‚=๐œ†๐‘› with unit normal field ๐‘›

๐‘”(ฮ“๐‘–๐‘—โŸ‚,๐‘›)=๐‘”(ฮ“๐‘–๐‘—,๐‘›)ย byย ฮ“๐‘–๐‘—โŠคโŸ‚๐‘›โŸน๐‘”(ฮ“๐‘–๐‘—,๐‘›)=0=๐‘”(โˆ‡โˆ‚๐‘–โˆ‚๐‘—,๐‘›)=โˆ‚๐‘–(๐‘”(โˆ‚๐‘—,๐‘›))โˆ’๐‘”(โˆ‚๐‘—,โˆ‡โˆ‚๐‘–๐‘›)=โˆ’๐‘”(โˆ‚๐‘—,โˆ‡โˆ‚๐‘–๐‘›)ย byย โˆ‚๐‘—โŸ‚๐‘›โŸน๐‘”(๐‘›,โˆ‚๐‘—)=0

So ฮ“๐‘–๐‘—โŸ‚=โˆ’๐‘”(โˆ‡โˆ‚๐‘–๐‘›,โˆ‚๐‘—)๐‘›

In โ„๐‘,๐‘ž ordinary coordinates at point ๐‘ฅ, ๐‘›=gradย |๐‘ฅ|2|gradย |๐‘ฅ|2|=1๐‘Ž๐‘ฅ๐‘–โˆ‚๐‘– and โˆ‡โˆ‚๐‘–๐‘›=โˆ‚๐‘–๐‘›=1๐‘Žโˆ‚๐‘–

==> ฮ“๐‘–๐‘—โŸ‚=โˆ’๐‘”(โˆ‡โˆ‚๐‘–๐‘›,โˆ‚๐‘—)๐‘›=โˆ’1๐‘Ž๐‘”(โˆ‚๐‘–,โˆ‚๐‘—)๐‘›

==>

๐‘…๐‘–๐‘—๐‘–โ€ฒ๐‘—โ€ฒโŠค=1๐‘Ž2๐‘”(๐‘›,๐‘›)(๐‘”๐‘–๐‘—๐‘”๐‘–โ€ฒ๐‘—โ€ฒโˆ’๐‘”๐‘–๐‘—โ€ฒ๐‘”๐‘–โ€ฒ๐‘—)=1ยฑ2๐‘Ž2(๐‘”โง€๐‘”)๐‘–๐‘—๐‘–โ€ฒ๐‘—โ€ฒ

Cosmological constant ฮ›=ยฑ(๐‘›โˆ’1)(๐‘›โˆ’2)2๐‘Ž2

Lorentz manifolds โ„š1,๐‘›(โˆ’๐‘Ž2),โ„š2,๐‘›โˆ’1(๐‘Ž2) in quadratic manifolds have "static coordinates", i.e. the metric will be in static form in static coordinates

  • โ„š1,๐‘›(โˆ’๐‘Ž2) static coordinates :=

Decomposition into radius ๐‘Ÿ + hyperbola โ„š1,1(โˆ’๐‘Ž2+๐‘Ÿ2) + sphere โ„š0,๐‘›โˆ’1(โˆ’๐‘Ÿ2)

Coordinates (๐‘ก,๐‘Ÿ,๐•Š๐‘›โˆ’2) with

๐‘Ÿ2=๐‘ฅ32+โ‹ฏ+๐‘ฅ๐‘›+12๐‘ฅ1=(๐‘Ž2โˆ’๐‘Ÿ2)12sinh(1๐‘Ž๐‘ก)๐‘ฅ2=(๐‘Ž2โˆ’๐‘Ÿ2)12cosh(1๐‘Ž๐‘ก)๐‘ฅ๐‘–=๐‘Ÿ๐‘ฅ๐‘–๐‘Ÿ

metric will be

๐‘”=(1โˆ’๐‘Ÿ2๐‘Ž2)๐‘‘๐‘ก2โˆ’((1โˆ’๐‘Ÿ2๐‘Ž2)โˆ’1๐‘‘๐‘Ÿ2+๐‘Ÿ2๐‘”๐•Š๐‘›โˆ’2)
  • โ„š2,๐‘›โˆ’1(๐‘Ž2) static coordinates :=

Decomposition into radius ๐‘Ÿ + sphere โ„š2,0(๐‘Ž2+๐‘Ÿ2) + sphere โ„š0,๐‘›โˆ’2(โˆ’๐‘Ÿ2)

Coordinates (๐‘ก,๐‘Ÿ,๐•Š๐‘›โˆ’2) with

๐‘Ÿ2=๐‘ฅ32+โ‹ฏ+๐‘ฅ๐‘›+12๐‘ฅ1=(๐‘Ž2+๐‘Ÿ2)12cos(1๐‘Ž๐‘ก)๐‘ฅ2=(๐‘Ž2+๐‘Ÿ2)12sin(1๐‘Ž๐‘ก)๐‘ฅ๐‘–=๐‘Ÿ๐‘ฅ๐‘–๐‘Ÿ

metric will be

๐‘”=(1+๐‘Ÿ2๐‘Ž2)๐‘‘๐‘ก2โˆ’((1+๐‘Ÿ2๐‘Ž2)โˆ’1๐‘‘๐‘Ÿ2+๐‘Ÿ2๐‘”๐•Š๐‘›โˆ’2)

The behavior of the time axis of โ„š2,๐‘›โˆ’1(๐‘Ž2) is ๐•Š1 like. And there exists closed time-like geodesicm, hence not causal

The time axis behavior of the "single-sheeted hyperboloid" โ„š1,๐‘›(โˆ’๐‘Ž2) is โ„ like, and the space existence is ๐•Š๐‘›โˆ’1 like. There exists closed space-like geodesic

โ„š1,๐‘›(โˆ’๐‘Ž2) can be "time-sliced" into โ„ร—๐•Š๐‘›โˆ’1. sinh is a diffeomorphism of โ„

๐‘ฅ1=๐‘Žsinh(1๐‘Ž๐‘ก)๐‘ฅ๐‘–=๐‘Žcosh(1๐‘Ž๐‘ก)๐‘ฅ๐‘–๐‘Žcosh(1๐‘Ž๐‘ก)

metric

๐‘”=๐‘‘๐‘ก2โˆ’๐‘Ž2ย coshย 2(1๐‘Ž๐‘ก)๐‘”๐•Š๐‘›

Example of "visualization" of โ„š2,๐‘›โˆ’1(๐‘Ž2): โ„š2,1(1) in โ„3 or ๐‘ฅ12+๐‘ฅ22โˆ’๐‘ฅ32=1, single-sheeted hyperboloid

Although time-like geodesics of โ„š2,1(1) are always closed, appearing as ellipses, time-like non-geodesics can have infinite length, for example, they can continuously approach light-like geodesics

Light-like geodesics appear as "parabolas" โ€ฆ