1. notice
  2. ไธญๆ–‡
  3. 1. feature
  4. ้€ป่พ‘
  5. 2. ้€ป่พ‘
  6. 3. ้›†ๅˆ่ฎบ
  7. 4. ๆ˜ ๅฐ„
  8. 5. ๅบ
  9. 6. ็ป„ๅˆ
  10. ๅพฎ็งฏๅˆ†
  11. 7. ๅฎžๆ•ฐ
  12. 8. ๆ•ฐๅˆ—ๆž้™
  13. 9. โ„^n
  14. 10. Euclidean ็ฉบ้—ด
  15. 11. Minkowski ็ฉบ้—ด
  16. 12. ๅคš้กนๅผ
  17. 13. ่งฃๆž (Euclidean)
  18. 14. ่งฃๆž (Minkowski)
  19. 15. ่งฃๆž struct ็š„ๆ“ไฝœ
  20. 16. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  21. 17. ไฝ“็งฏ
  22. 18. ็งฏๅˆ†
  23. 19. ๆ•ฃๅบฆ
  24. 20. ็ฝ‘ๆž้™
  25. 21. ็ดง่‡ด
  26. 22. ่ฟž้€š
  27. 23. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  28. 24. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  29. 25. ่ง’ๅบฆ
  30. ๅ‡ ไฝ•
  31. 26. ๆตๅฝข
  32. 27. ๅบฆ่ง„
  33. 28. ๅบฆ่ง„็š„่”็ปœ
  34. 29. Levi-Civita ๅฏผๆ•ฐ
  35. 30. ๅบฆ่ง„็š„ๆ›ฒ็އ
  36. 31. Einstein ๅบฆ่ง„
  37. 32. ๅธธๆˆช้ขๆ›ฒ็އ
  38. 33. simple-symmetric-space
  39. 34. ไธปไธ›
  40. 35. ็พคไฝœ็”จ
  41. 36. ็ƒๆžๆŠ•ๅฝฑ
  42. 37. Hopf ไธ›
  43. ๅœบ่ฎบ
  44. 38. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  45. 39. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  46. 40. ็บฏ้‡ๅœบ
  47. 41. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  48. 42. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  49. 43. ๅ…‰้”ฅๅฐ„ๅฝฑ
  50. 44. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  51. 45. Lorentz ็พค
  52. 46. ๆ—‹้‡ๅœบ
  53. 47. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  54. 48. ็”ต็ฃๅœบ
  55. 49. ๅผ ้‡ๅœบ็š„ Laplacian
  56. 50. Einstein ๅบฆ่ง„
  57. 51. ็›ธไบ’ไฝœ็”จ
  58. 52. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  59. 53. ๅ‚่€ƒ
  60. English
  61. 54. notice
  62. 55. feature
  63. logic-topic
  64. 56. logic
  65. 57. set-theory
  66. 58. map
  67. 59. order
  68. 60. combinatorics
  69. calculus
  70. 61. real-numbers
  71. 62. limit-sequence
  72. 63. โ„^n
  73. 64. Euclidean-space
  74. 65. Minkowski-space
  75. 66. polynomial
  76. 67. analytic-Euclidean
  77. 68. analytic-Minkowski
  78. 69. analytic-struct-operation
  79. 70. ordinary-differential-equation
  80. 71. volume
  81. 72. integral
  82. 73. divergence
  83. 74. limit-net
  84. 75. compact
  85. 76. connected
  86. 77. topology-struct-operation
  87. 78. exponential
  88. 79. angle
  89. geometry
  90. 80. manifold
  91. 81. metric
  92. 82. metric-connection
  93. 83. geodesic-derivative
  94. 84. curvature-of-metric
  95. 85. Einstein-metric
  96. 86. constant-sectional-curvature
  97. 87. simple-symmetric-space
  98. 88. principal-bundle
  99. 89. group-action
  100. 90. stereographic-projection
  101. 91. Hopf-bundle
  102. field-theory
  103. 92. point-particle-non-relativity
  104. 93. point-particle-relativity
  105. 94. scalar-field
  106. 95. scalar-field-current
  107. 96. scalar-field-non-relativity
  108. 97. projective-lightcone
  109. 98. spacetime-momentum-spinor-representation
  110. 99. Lorentz-group
  111. 100. spinor-field
  112. 101. spinor-field-current
  113. 102. electromagnetic-field
  114. 103. Laplacian-of-tensor-field
  115. 104. Einstein-metric
  116. 105. interaction
  117. 106. harmonic-oscillator-quantization
  118. 107. reference

note-math

Bijection ๐‘“:๐‘‹โ†”๐‘‹ forms a group

Mapping is associative

Composition of mappings is associative. You can compose functions from either the pre or post: ๐‘“โ‡๐‘”โˆ˜๐‘“ or ๐‘“โ‡๐‘“โˆ˜๐‘”

for octonion with non associative multiplication, for the action defined by multiplication octonion, its composition cannot represented by multiplication ๐‘Žโˆ˜๐‘โ‰ ๐‘Žโ‹…๐‘

When a bijection acts on a certain structure of ๐‘‹, there is a structure group that preserves the structure, which is a subgroup of ๐‘‹โ†”๐‘‹

Example GL preserves #link(<linear>)[linear structure]

let ๐บ be a subgroup of ๐‘‹!. let ๐‘ฅโˆˆ๐‘‹

group-action_(tag)

๐บร—๐‘‹โŸถ๐‘‹(๐‘”,๐‘ฅ)โŸฟ๐‘”โ‹…๐‘ฅ

orbit_(tag) :=

๐บโ‹…๐‘ฅ={๐‘”๐‘ฅโˆˆ๐‘‹:๐‘”โˆˆ๐บ}=ย imย {๐บโŸถ๐‘‹๐‘”โŸฟ๐‘”๐‘ฅ}

Example SO(3) acts on โ„3, orbit ๐•Š2(|๐‘ฅ|)

isotropy_(tag) :=

๐บ๐‘ฅ={๐‘”โˆˆ๐บ:๐‘”๐‘ฅ=๐‘ฅ}=ย imย โˆ’1{๐บโŸถ๐‘‹๐‘”โŸฟ๐‘”๐‘ฅ}(๐‘ฅ)

Example SO(3) acts on โ„3, isotropy = rotation around the axis where ๐‘ฅโˆˆ๐•Š2 is located, which is an embedded SO(2)

๐บ๐‘ฅ is a subgroup of ๐บ. a map ๐‘“ that fix a point ๐‘ฅโˆˆ๐‘‹ constitutes a subgroup of ๐‘‹!, ๐บ๐‘ฅ is the intersection of the action group of ๐บ and this fix ๐‘ฅ mapping subgroup

Isotropy after changing the orbit base point ๐‘ฅโ‡โ„Ž๐‘ฅ

๐‘”(โ„Ž๐‘ฅ)=โ„Ž๐‘ฅโŸบโ„Žโˆ’1๐‘”โ„Ž๐‘ฅ=๐‘ฅโŸบโ„Žโˆ’1๐‘”โ„Žโˆˆ๐บ๐‘ฅ

Mapping ๐บโŸถ๐บ๐‘”โŸฟโ„Žโˆ’1๐‘”โ„Ž

  • Homomorphism โ„Žโˆ’1(๐‘”โ‹…๐‘”โ€ฒ)โ„Ž=(โ„Žโˆ’1๐‘”โ„Ž)โ‹…(โ„Žโˆ’1๐‘”โ€ฒโ„Ž)
  • Bijection โ„Žโˆ’1๐‘”โ„Ž=๐‘”โ€ฒโŸบ๐‘”=โ„Ž๐‘”โ€ฒโ„Žโˆ’1

isotropy-in-same-orbit-is-isom_(tag) The isotropy of โ„Ž๐‘ฅ, ๐บโ„Ž๐‘ฅ, is written as โ„Ž๐บ๐‘ฅโ„Žโˆ’1, which is isomorphic to ๐บ๐‘ฅ

According to the inverse image of ๐บ acting on ๐บ๐‘ฅ, decompose ๐บ into the subgroup ๐บ๐‘ฅ and its coset โ„Ž๐บ๐‘ฅ

๐บ=โจ†๐‘ฆโˆˆ๐บ๐‘ฅย imย โˆ’1{๐บโŸถ๐‘‹๐‘”โŸฟ๐‘”๐‘ฅ}(๐‘ฆ)

Calculate the inverse image of ๐‘ฆ=โ„Ž๐‘ฅโˆˆ๐บ๐‘ฅ, ๐‘”๐‘ฅ=โ„Ž๐‘ฅโŸบโ„Žโˆ’1๐‘”โˆˆ๐บ๐‘ฅโŸบ๐‘”โˆˆโ„Ž๐บ๐‘ฅ

|imย โˆ’1{๐บโŸถ๐‘‹๐‘”โŸฟ๐‘”๐‘ฅ}(๐‘ฆ)|=|โ„Ž๐บ๐‘ฅ|=|๐บ๐‘ฅ|

orbit-istropy-theorem_(tag) There exists a bijection

๐บ๐‘ฅร—๐บ๐‘ฅโŸท๐บ=โจ†๐‘ฆโˆˆ๐บ๐‘ฅโ‹ฏ(๐‘ฆ,โ‹ฏ)โŸฟโ‹ฏ

Therefore, |๐บ|=|๐บ๐‘ฅ|โ‹…|๐บ๐‘ฅ|

set of cosets is isomorphic to the orbit ๐บ๐บ๐‘ฅโ‰ƒ๐บ๐‘ฅ. so |๐บ๐‘ฅ|=|๐บ||๐บ๐‘ฅ| which โ‰ค|๐บ|

Example let ๐บ be a finite group, let ๐‘Žโˆˆ๐บ. ๐ป={๐‘Ž1,๐‘Ž2,โ€ฆ} is a finite set and is a subgroup. There exists a smallest ๐‘˜โˆˆโ„• such that ๐‘Ž๐‘˜=๐Ÿ™, thus ๐‘Žโˆ’1=๐‘Ž๐‘˜โˆ’1. Let the group ๐บ act on the coset space {๐‘”๐ป:๐‘”โˆˆ๐บ}, isotropy ๐บ๐ป=๐ป, then |๐บ||๐ป|=|๐บ|๐‘˜โˆˆโ„• or |๐บ| is divisible by ๐‘˜

Change the base point of the orbit. forall ๐‘ฆ=โ„Ž๐‘ฅ ==> ๐บ๐‘ฅ=๐บ๐‘ฆ

Proof

๐บโŸถ๐บ๐‘”โŸฟ๐‘”โ„Ž

is a bijection. (invertible.) So

๐บ๐‘ฅ=ย imย {๐บโŸถ๐‘‹๐‘”โŸฟ๐‘”๐‘ฅ}=ย imย {๐บโŸถ๐บโŸถ๐‘‹๐‘”โŸฟ๐‘”โ„ŽโŸฟ๐‘”โ„Ž๐‘ฅ}=๐บ(โ„Ž๐‘ฅ)

decomposition-into-orbit_(tag) ๐บ๐‘ฅโ‰ ๐บ๐‘ฅโ€ฒโŸบ๐บ๐‘ฅโˆฉ๐บ๐‘ฅโ€ฒ=โˆ… Proof

Contrapositive ๐บ๐‘ฅ=๐บ๐‘ฅโ€ฒโŸบ๐บ๐‘ฅโˆฉ๐บ๐‘ฅโ€ฒโ‰ โˆ…

Just need to prove <==

โˆƒโ„Žโˆˆ๐บ,๐‘ฆ=โ„Ž๐‘ฅโˆƒโ„Žโ€ฒโˆˆ๐บ,๐‘ฆ=โ„Žโ€ฒ๐‘ฅโ€ฒ

But we have already proved that ๐บ๐‘ฅ=๐บ(โ„Ž๐‘ฅ)=๐บ๐‘ฆ=๐บ(โ„Žโ€ฒ๐‘ฅโ€ฒ)=๐บ๐‘ฅโ€ฒ

Example SO(3),โ„3, different orbits are spheres of different radii

The set of orbits :=

๐‘‹๐บโ‰”{๐บ๐‘ฅโˆˆย Subset(๐‘‹):๐‘ฅโˆˆ๐‘‹}

Burnside-theorem_(tag) โ€ฆ

conjugate-action_(tag) Conjugate action

๐‘โ„Ž:๐บโŸถ๐บ๐‘”โŸฟโ„Ž๐‘”โ„Žโˆ’1

as the transformation of the coordinates of the action of ๐‘” caused by changing the coordinates โ„Ž for any acted space ๐‘‹

Example Representations of linear maps in different coordinates. Representations of manifold maps in different coordinates

The orbit of the conjugate action is called conjugate-class_(tag)

Example The conjugate-class of a permutation is a cycle

Commutator commutator_(tag)

(โ„Ž๐‘”โ„Žโˆ’1=๐‘”)โŸบ(โ„Ž๐‘”โŸบ๐‘”โ„Ž)โŸบ๐Ÿ™=โ„Žโˆ’1โ‹…๐‘”โ‹…โ„Žโ‹…๐‘”โˆ’1

action-surjective_(tag) alias action-transitive_(tag) := The following definitions are equivalent

  • |๐‘‹๐บ|=1
  • โˆƒ๐‘ฅโˆˆ๐‘‹,๐บ๐‘ฅ=๐‘‹
  • โˆ€๐‘ฅโˆˆ๐‘‹,๐บ๐‘ฅ=๐‘‹
  • ๐บโŸถ๐‘‹๐‘”โŸฟ๐‘”๐‘ฅ is a surjective ๐บโ† ๐‘‹

Example SO(3) acting on โ„3โˆ–0 is not transitive. GL(3,โ„) acting on โ„3โˆ–0 is transitive

action-injective_(tag) alias action-free_(tag) := The following definitions are equivalent

  • Each orbit is a copy of ๐บ
  • ๐‘”๐‘ฅ=โ„Ž๐‘ฅโŸน๐‘”=โ„Ž
  • ๐‘”๐‘ฅ=๐‘ฅโŸน๐‘”=๐Ÿ™
  • ๐บโŸถ๐‘‹๐‘”โŸฟ๐‘”๐‘ฅ is an injective ๐บโ†ช๐‘‹