1. notice
  2. English
  3. logic-topic
  4. 1. logic
  5. 2. basic
  6. 3. map
  7. 4. order
  8. 5. combinatorics
  9. calculus
  10. 6. real-numbers
  11. 7. limit-sequence
  12. 8. division-algebra
  13. 9. Euclidean-space
  14. 10. Minkowski-space
  15. 11. polynomial
  16. 12. analytic-Euclidean
  17. 13. analytic-Minkowski
  18. 14. analytic-struct-operation
  19. 15. ordinary-differential-equation
  20. 16. volume
  21. 17. integral
  22. 18. divergence
  23. 19. limit-net
  24. 20. topology
  25. 21. compact
  26. 22. connected
  27. 23. topology-struct-operation
  28. 24. exponential
  29. 25. angle
  30. geometry
  31. 26. manifold
  32. 27. metric
  33. 28. metric-connection
  34. 29. geodesic-derivative
  35. 30. curvature-of-metric
  36. 31. Einstein-metric
  37. 32. constant-sectional-curvature
  38. 33. simple-symmetric-space
  39. 34. principal-bundle
  40. 35. group
  41. 36. stereographic-projection
  42. 37. Hopf-bundle
  43. field-theory
  44. 38. point-particle-non-relativity
  45. 39. point-particle-relativity
  46. 40. scalar-field
  47. 41. scalar-field-current
  48. 42. scalar-field-non-relativity
  49. 43. projective-lightcone
  50. 44. spacetime-momentum-spinor-representation
  51. 45. Lorentz-group
  52. 46. spinor-field
  53. 47. spinor-field-current
  54. 48. electromagnetic-field
  55. 49. Laplacian-of-tensor-field
  56. 50. Einstein-metric
  57. 51. interaction
  58. 52. harmonic-oscillator-quantization
  59. 53. spinor-field-misc
  60. 54. reference
  61. ไธญๆ–‡
  62. 55. notice
  63. ้€ป่พ‘
  64. 56. ้€ป่พ‘
  65. 57. ๅŸบ็ก€
  66. 58. ๆ˜ ๅฐ„
  67. 59. ๅบ
  68. 60. ็ป„ๅˆ
  69. ๅพฎ็งฏๅˆ†
  70. 61. ๅฎžๆ•ฐ
  71. 62. ๆ•ฐๅˆ—ๆž้™
  72. 63. ๅฏ้™คไปฃๆ•ฐ
  73. 64. Euclidean ็ฉบ้—ด
  74. 65. Minkowski ็ฉบ้—ด
  75. 66. ๅคš้กนๅผ
  76. 67. ่งฃๆž (Euclidean)
  77. 68. ่งฃๆž (Minkowski)
  78. 69. ่งฃๆž struct ็š„ๆ“ไฝœ
  79. 70. ๅธธๅพฎๅˆ†ๆ–น็จ‹
  80. 71. ไฝ“็งฏ
  81. 72. ็งฏๅˆ†
  82. 73. ๆ•ฃๅบฆ
  83. 74. ็ฝ‘ๆž้™
  84. 75. ๆ‹“ๆ‰‘
  85. 76. ็ดง่‡ด
  86. 77. ่ฟž้€š
  87. 78. ๆ‹“ๆ‰‘ struct ็š„ๆ“ไฝœ
  88. 79. ๆŒ‡ๆ•ฐๅ‡ฝๆ•ฐ
  89. 80. ่ง’ๅบฆ
  90. ๅ‡ ไฝ•
  91. 81. ๆตๅฝข
  92. 82. ๅบฆ่ง„
  93. 83. ๅบฆ่ง„็š„่”็ปœ
  94. 84. Levi-Civita ๅฏผๆ•ฐ
  95. 85. ๅบฆ่ง„็š„ๆ›ฒ็އ
  96. 86. Einstein ๅบฆ่ง„
  97. 87. ๅธธๆˆช้ขๆ›ฒ็އ
  98. 88. simple-symmetric-space
  99. 89. ไธปไธ›
  100. 90. ็พค
  101. 91. ็ƒๆžๆŠ•ๅฝฑ
  102. 92. Hopf ไธ›
  103. ๅœบ่ฎบ
  104. 93. ้ž็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  105. 94. ็›ธๅฏน่ฎบ็‚น็ฒ’ๅญ
  106. 95. ็บฏ้‡ๅœบ
  107. 96. ็บฏ้‡ๅœบ็š„ๅฎˆๆ’ๆต
  108. 97. ้ž็›ธๅฏน่ฎบ็บฏ้‡ๅœบ
  109. 98. ๅ…‰้”ฅๅฐ„ๅฝฑ
  110. 99. ๆ—ถ็ฉบๅŠจ้‡็š„่‡ชๆ—‹่กจ็คบ
  111. 100. Lorentz ็พค
  112. 101. ๆ—‹้‡ๅœบ
  113. 102. ๆ—‹้‡ๅœบ็š„ๅฎˆๆ’ๆต
  114. 103. ็”ต็ฃๅœบ
  115. 104. ๅผ ้‡ๅœบ็š„ Laplacian
  116. 105. Einstein ๅบฆ่ง„
  117. 106. ็›ธไบ’ไฝœ็”จ
  118. 107. ่ฐๆŒฏๅญ้‡ๅญๅŒ–
  119. 108. ๆ—‹้‡ๅœบๆ‚้กน
  120. 109. ๅ‚่€ƒ

note-math

[complex-number] Complex numbers.

Addition is the same as in . Multiplication uses or and the distributive law

Origin of complex numbers or

  • Characteristic equation of the harmonic oscillator ODE
  • Another motivation for complex numbers comes from polynomial factorization. A real polynomial can be factored completely into products of the form or , while the latter can be factored in as , in particular, . So for convenience, one may choose to use complex numbers.

    You can still choose to think of this as merely an algebraic convenience, without needing the geometry of complex numbers

    However, in the split complex below, cannot be factored into linear polynomials. Even has four roots, besides , there are two more roots

Example [split-complex-number] Split-complex numbers.

Addition is the same as in . Multiplication uses or and the distributive law

Also see Intuitive explanation of complex numbers for the relation between multiplication by unit complex numbers and rotations in

[normed-division-algebra]

has a quadratic form , a multiplication , and for elements with unit (quadratic form) distance , the multiplication also has unit distance

Combining unit distance and scalar multiplication, this property can be expressed as

  • corresponds to

by

  • corresponds to

by

null elements have no multiplicative inverse

[quaternion]

Starting from or as , add a new imaginary unit

  • Define another imaginary unit

  • Different imaginary units anti-commute

  • Conjugate of an imaginary unit gives its negative

This results in

  • Imaginary unit multiplication is associative
  • Satisfies norm multiplication

  • If starting from , , thus
  • If starting from , , thus
  • give

  • give

Eaxmple [octonion] Using a new imaginary unit in (where )

Define other imaginary units

Different imaginary units anticommute

Different imaginary units anti-associate if

Conjugate of imaginary unit is negative

This makes

  • norm multiplication

Similarly, according to and gives octonion for or split octonion for

  • give

  • give

What results from and the associativity of imaginary units is another algebra , which does not satisfy

[imaginary-automorphism] The method of constructing new imaginary units is not coordinate-free, so we need to consider automorphisms of imaginary units with . Since it preserves multiplication, it automatically preserves distance

Example for itโ€™s symmetric

Question (ref-21, p.35) (ref-22, p.85)

  • for
  • for .

as automorphism of illustrates that, without additional structure, such as multiplication and , only the bare linear space structure cannot yield special groups like . (Although it is said that all compact groups can have matrix representations.)

[problem-of-quaternionic-linear]

Attempting to define linear algebra for . We immediately encounter a problem: one definition of a linear map is as a homomorphism between linear spaces, but since is non-commutative, scalar multiplication cannot arbitrarily commute with matrix multiplication on the same side , thus matrix multiplication on is not a linear transformation.

Therefore, the โ€œlinear structureโ€ of is defined as, for example, left matrix multiplication acting as the linear map , and right scalar multiplication , such that the linear map is a homomorphism of the linear structure .